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Canvis en les connexions neuronals provoquen 
canvis en el comportament dels éssers vius.



2 tipus de connexions: Excitadores i Inhibidores. 
La pèrdua del balanç entre elles pot causar certes 

malalties neurològiques.



Què fa 1 
Neurona?

Què fan la unió 
de Neurones?



Quina quantitat d’informació rep una neurona de la resta?

Com canvien les connexions neuronals en tasques d’aprenentatge?

Estimació de conductàncies

Connectivitat cerebral. Comportament humà



Una neurona, un circuit
El model neuronal

En cada neurona s’hi amaga un circuit, 
i en la modelització d’aquest, un intent d’entendre com pensa el cervell.



Potencials d’acció (spikes)

Bursting

Exemples d’activitats neuronals

Estat de repòs

El model neuronal
Una neurona, un circuit.

V = potencial intracel·lular - potencial extracel·lular



Una neurona, un circuit.
El model neuronal

Activitat neuronal extreta d’una neurona V(t)

dV
dt

= f(V(t), x(t)) − Isyn(t) + Iapp,

dx
dt

= g(V(t), x(t)),

Extreure un model matemàtic que descrigui l’activitat observada experimentalment.

DADES EXPERIMENTALS

Isyn(t) = gE(t)(V(t) − VE) + gI(t)(V(t) − VI)

 membrane potential (voltatge); 
 conductàncies

V(t)
gE(t), gI(t)

CORRENT SINÀPTICA 
(PROVÉ D’ALTRES 

NEURONES, )Isyn(t)

CORRENTS 
EXTERNES MEDI 

EXTRACEL·LULAR



Una neurona, un circuit.
El model neuronal

dV
dt

= − gL(V − VL) − gNam3h(V − VNa) − gKn4(V − VK) − Isyn(t) + Iapp,

dx
dt

= ϕx
x∞(V ) − x

τx(V )
, x ∈ {m, n, h}

Isyn(t) = gE(t)(V(t) − VE) + gI(t)(V(t) − VI)

 membrane potential (voltatge);  
;  probabilitat d’entrada o sortida de ions; 
 conductàncies amb ; 

 potencial revers amb ; 
 corrent aplicada (paràmetre de control).

V(t)
x(t) x ∈ {m, n, h}
gi(t) i ∈ {L, Na, K, E, I}
Vi i ∈ {L, Na, K, E, I}
Iapp

Exemple de model neuronal
Model de Hodgkin-Huxley

Reduïble a 2D a causa de les diferents escales temporals



Patrons observats en les activitats neuronals

El model neuronal
Una neurona, un circuit.

Patrons del Bursting  
[Classificació de Rinzel, 1980s]

Patrons en estat de repòs o règim de spikes  
[Gerstner et al 2014]

Repòs

Spikes



dV
dt

= f(V(t), x(t)) − Isyn(t),

dx
dt

= g(V(t), x(t)),

Isyn(t) = gE(t)(V(t) − VE) + gI(t)(V(t) − VI)

 membrane potential (voltatge); 
 conductàncies

V(t)
gE(t), gI(t)

x x

v

x
x

v

Una neurona, un circuit.
El model neuronal

amb  i  funcions 
lineals a trossos

f(V(t), x(t)) g(V(t), x(t))

dV
dt

= f(V(t), x(t)) − Isyn(t),

dx
dt

= g(V(t), x(t)),

Isyn(t) = gE(t)(V(t) − VE) + gI(t)(V(t) − VI)
f(V(t), x(t)) = gL(V − VL) + ∑

ion

gion(t)(V − Vion)



Una neurona, un circuit.
El model neuronal

{C ·V = f(V ) − w − w0 − Isyn(V, t),
·w = V − γw − V0,

Model de McKean (1970) Model de Doi-Kumagai

f(V ) =
−V V < a/2,

V − a a/2 ≤ V ≤ (1 + a)/2,
1 − V V > (1 + a)/2.

amb

 := ptencial de membrama, 
 := conductància sinàptica, 

 := corrents de la membrada, 
 := capacitància de la membrana 

 := paràmetres del model.

V
gsyn(t)
w
0 < C ≪ 1
w0, V0, γ, a, Vsyn

Isyn(V, t) = gsyn(t)(V − Vsyn)

·V = f(V ) − y − z − Isyn(t),
·y = η(V − ay),
·z = ε(V − bz),

f(V ) = − V + |V + 1 | − |V − 1 |amb

 := ptencial de membrama, 
 := corrent sinàptica, 

 := corrents de la membrada,       
,  := paràmetres del model.

V
Isyn(t)
y, z
0 < ε ≪ 1 η, a, b

V

z yV

V

y

z

t



Estimació de conductàncies.    
Un problema invers

Entre els corrents del cervell hi ha secrets que cap microscopi pot revelar: les conductàncies sinàptiques.  
Només les matemàtiques, amb els seus mètodes d’estimació, ens permeten entreveure’n el rastre.



Neurona 
objectiu

Població de neurones 
excitadores

Població de neurones 
inhibidores

• Experimentalment, les conductàncies sinàptiques no es poden extreure directament de la 
neurona, de manera que cal utilitzar mètodes inversos. 

• L’alteració de l’equilibri entre les sinapsis excitadores i inhibitòries és la causa de diversos 
trastorns neurodegeneratius.

Importància de conèxier la contibució excitadora i la inhibidora
Estimació de conductàncies

Observable

sinàpsis excitadora

sinàpsis 

inhibidora



Dificultats a tenir en compte Problema Invers 

No-linealitats en el potencial de 
membrana ( ). 

Variabilitat a través de diferents 
extraccions de dades. 

Soroll en els mesuraments. 

Absència d’un model base universal.

·V ≠ 0

Dades 
Experimentals

Model Matemàtic 
(model base)

dV
dt

= f (V(t), x(t)) − Isyn(t) + Iapp,

dx
dt

= g(V(t), x(t)),

Isyn(t) = gE(t)(V(t) − VE) + gI(t)(V(t) − VI) .

Procediment 
d’estimació

Disseny

Extreure 
 i gE(t) gI(t)

Importància de conèxier la contibució excitadora i la inhibidora
Estimació de conductàncies



Importància de conèxier la contibució excitadora i la inhibidora

gsyn(t) = gE(t) + gI(t) + gL,

Veff(t) =
gE(t)VE + gI(t)VI + gLVL

gsyn(t)
.

V(t; Iapp) = Veff(t) +
Iapp

gsyn(t)
,

amb

CORRENT SINÀPTICA 
(PROVÉ D’ALTRES 

NEURONES, )Isyn(t)

CORRENTS 
EXTERNES MEDI 

EXTRACEL·LULAR

Primers models: Suposaven  i corrents iòniques . 
Guillamon et al., 2006: L’estimació no es aplicable en zones de spikes (errors del 
100-200%)

·V ≈ 0 ≈ 0

Estimació de conductàncies



Importància de conèxier la contibució excitadora i la inhibidora

Primers models: Suposaven  i corrents iòniques = 0. 
Guillamon et al., 2006: L’estimació no es aplicable en zones de spikes (errors del 
100-200%)

·V ≈ 0

Vich i Guillamon, 2015: les estimacions realitzades en les zones de repòs (sub-llindar) 
també presenten males estimacions quan hi ha presència de corrents iònics actius. 

CORRENT SINÀPTICA 
(PROVÉ D’ALTRES 

NEURONES, )Isyn(t)

CORRENTS 
EXTERNES MEDI 

EXTRACEL·LULAR

Estimació de conductàncies



Vich et al., 2015-2017: Models quadràtics per millorar les estimacions realitzades 
a l’activitat sub-llindar.

Importància de conèxier la contibució excitadora i la inhibidora

Primers models: Suposaven  i corrents iòniques = 0. 
Guillamon et al., 2006: L’estimació no es aplicable en zones de spikes (errors del 
100-200%)

·V ≈ 0

Vich i Guillamon, 2015: les estimacions realitzades en les zones de repòs (sub-llindar) 
també presenten males estimacions quan hi ha presència de corrents iònics actius. 

Estimació de conductàncies



Importància de conèxier la contibució excitadora i la inhibidora

Model determinista

ε
dV
dτ

= aV2(τ) − w(τ) + Isyn(t) + Iapp,

dw
dτ

= αV(τ) − λ − w(τ) .

;  variable ràpida;  variable lenta. SISTEMA SLOW-FASTτ = tε V(t) w(t)

Per la teoria geomètrica de Fenichel, sabem que si 
estudiam el cas límit , la varietat crítica de la 
perturbació es manté. Llavors, integrant al cas límit:

ε = 0

Corba V-I d’una neurona motor

Estimació de conductàncies



Importància de conèxier la contibució excitadora i la inhibidora

Model determinista

ε
dV
dτ

= aV2(τ) − w(τ) + Isyn(τ) + Iapp,

dw
dτ

= αV(τ) − λ − w(τ) .

;  variable ràpida;  variable lenta. SISTEMA SLOW-FASTτ = tε V(t) w(t)

Per la teoria geomètrica de Fenichel, sabem que si 
estudiam el cas límit , la varietat crítica de la 
perturbació es manté. Llavors, integrant al cas límit:

ε = 0
0

w(τ) = e−τ (w(τ0)eτ0 + ∫
τ

τ0

(αV(s) − λ)ds) .

Isyn(τ) = − aV2(τ) + e−τ (w(τ0)eτ0 + ∫
τ

τ0

(αV(s) − λ)ds) − Iapp .
Corba V-I d’una neurona motor

Isyn(t) = gE(t)(V(t) − VE) + gI(t)(V(t) − VI)

Estimació de conductàncies



Importància de conèxier la contibució excitadora i la inhibidora

Model determinista

ε
dV
dτ

= aV2(τ) − w(τ) + Isyn(τ) + Iapp,

dw
dτ

= αV(τ) − λ − w(τ) .

;  variable ràpida;  variable lenta. SISTEMA SLOW-FASTτ = tε V(t) w(t)

Per la teoria geomètrica de Fenichel, sabem que si 
estudiam el cas límit , la varietat crítica de la 
perturbació es manté. Llavors, integrant al cas límit:

ε = 0
0

w(τ) = e−τ (w(τ0)eτ0 + ∫
τ

τ0

(αV(s) − λ)ds) .

Isyn(τ) = − aV2(τ) + e−τ (w(τ0)eτ0 + ∫
τ

τ0

(αV(s) − λ)ds) − Iapp .

Considerant dos potencials de membrana diferents, 
corresponents a dos corrents aplicats  diferents, 

podem separar entre  i .

Iapp

gE(t) gI(t)

Estimació de conductàncies



Importància de conèxier la contibució excitadora i la inhibidora

Model estocàstic

dV = (aV2 + bV + c)dt + σdWt,

a =
α
C

,

b =
1
C

(−2αVT − gE(t) − gI(t)),

c =
1
C

(αV2
T + gE(t)VE + gI(t)VI − IT + Iapp) .

Una SDE de segon ordre, no es pot resoldre directament. 
Emprant el mètode de màxima versemblança (MLE), es pot 
resoldre numèricament.

Suposant les conductàncies estacionàries en una finestra de 50ms

Estimació de conductàncies



Vich et al., 2015-2017: Models quadràtics per millorar les estimacions realitzades 
a l’activitat sub-llindar.

Vich et al., 2017-2020: Primers models per estimar  en règim d’spikesgsyn(t)

Importància de conèxier la contibució excitadora i la inhibidora

Primers models: Suposaven  i corrents iòniques = 0. 
Guillamon et al., 2006: L’estimació no es aplicable en zones de spikes (errors del 
100-200%)

·V ≈ 0

Vich i Guillamon, 2015: les estimacions realitzades en les zones de repòs (sub-llindar) 
també presenten males estimacions quan hi ha presència de corrents iònics actius. 

Estimació de conductàncies



Règim d’Spikes

Model Lineal a Trossos

Considerant el model McKean, i aprofitant els avantatges 
d’estar en un ambient “lineal a trossos”…

Estimació de conductàncies



Model Lineal a Trossos

Considerant el model McKean, i aprofitant els avantatges 
d’estar en un ambient “lineal a trossos”…

TM,down =
1

λq,M
ln

γ(I − I2)Bm + Km

γ(I − I2)Bm + Km,d
,

TM,up =
1

λq,M
ln

γ(I − I1)Bm + Km

γ(I − I1)Bm + Km,u
, TL =

1
λs,L

ln ( γ(I − I1)BL

γ(I − I1)BL − KL ),

TR =
1

λs,L
ln ( γ(I − I2)BL

γ(I − I2)BL − KL ),

 i  són els valors propis lateral-lent i central-

ràpid, respectivament. Dependència no lineal amb .

λs,L λq,M

gsyn

.   

Sabent el periode , podem trobar .

T(gsyn) = TM,up + TL + TM,down + TR

T gsyn

K’s i B’s funcions donades. Dependència no lineal amb 
.gsyn

 i  corrent externa per assegurar l’existència de 

l’òrbita periòdica. Dependència lineal amb .

I1 I2
gsyn

Règim d’Spikes
Estimació de conductàncies



Model Lineal a Trossos

Considerant el model McKean, i aprofitant els avantatges 
d’estar en un ambient “lineal a trossos”…

TM,down =
1

λq,M
ln

γ(I − I2)Bm + Km

γ(I − I2)Bm + Km,d
,

TM,up =
1

λq,M
ln

γ(I − I1)Bm + Km

γ(I − I1)Bm + Km,u
, TL =

1
λs,L

ln ( γ(I − I1)BL

γ(I − I1)BL − KL ),

TR =
1

λs,L
ln ( γ(I − I2)BL

γ(I − I2)BL − KL ),

.   

Sabent el periode , podem trobar .

T(gsyn) = TM,up + TL + TM,down + TR

T gsyn

Règim d’Spikes
Estimació de conductàncies



Model Lineal a Trossos

Considerant el model McKean, i aprofitant els avantatges 
d’estar en un ambient “lineal a trossos”…

TM,down =
1

λq,M
ln

γ(I − I2)Bm + Km

γ(I − I2)Bm + Km,d
,

TM,up =
1

λq,M
ln

γ(I − I1)Bm + Km

γ(I − I1)Bm + Km,u
, TL =

1
λs,L

ln ( γ(I − I1)BL

γ(I − I1)BL − KL ),

TR =
1

λs,L
ln ( γ(I − I2)BL

γ(I − I2)BL − KL ),

.   

Sabent el periode , podem trobar .

T(gsyn) = TM,up + TL + TM,down + TR

T gsyn

g(1)
syn, g(2)

syn, …g(N)
syn .

Règim d’Spikes
Estimació de conductàncies



Model Lineal a Trossos

Considerant el model McKean, i aprofitant els avantatges 
d’estar en un ambient “lineal a trossos”…

TM,down =
1

λq,M
ln

γ(I − I2)Bm + Km

γ(I − I2)Bm + Km,d
,

TM,up =
1

λq,M
ln

γ(I − I1)Bm + Km

γ(I − I1)Bm + Km,u
, TL =

1
λs,L

ln ( γ(I − I1)BL

γ(I − I1)BL − KL ),

TR =
1

λs,L
ln ( γ(I − I2)BL

γ(I − I2)BL − KL ),

.   

Sabent el periode , podem trobar .

T(gsyn) = TM,up + TL + TM,down + TR

T gsyn

Règim d’Spikes
Estimació de conductàncies



Extensió a models més realistes…

Règim d’Spikes

[Preprint R.Delicado et al.]

Estimació de conductàncies



- Treball futur

“Slow Passage” i “Spike Adding”

S’ha observat, en el model de Doi-Kumagai, 
que el nombre d’spikes del burst, la seva 
amplitud i la longitud de l’interval de temps 
entre 2 bursts diferents, canvia segons el 
parell de condductàncies  i  
considerats. 

3 observables, 2 paràmetres a estimar.

gE(t) gI(t)

Règim de Bursting
Estimació de conductàncies



Règim de Bursting

Les transicions de l’estat de repòs al burst i viceversa s’entenen com a bifurcacions dinàmiques, 
les quals només es poden desxifrar completament analitzant tant els subsistemes ràpids com 
els lents.

“Slow Passage” a través de bifurcacions

Fenomen de bursting degut al pas 
lent a través de la bifurcació.

Aquests sistemes produeixen un retard en el 
comportament dinàmic fent quan, movent un cert 
paràmetre, el sistema travessa una bifurcació del 
seu subsistema ràpid.

[Tesi J. Penalva, 2024]

Estimació de conductàncies



Règim de Bursting

Afegiment de nous spikes durant la fase de bursting a mesura que varia un paràmetre del 
sistema.

Spike Adding

Un element clau en el fenomen 
d’spike adding és el pas lent a través 
de la connexió homoclínica que 
presenta el subsistema ràpid.

[Tesi J. Penalva, 2024]

Estimació de conductàncies



Connectivitat Cerebral 
Un món per descobrir

L’univers és infinit i llunyà; el cervell, petit i proper.  
Però entenem millor els astres que la nostra pròpia ment.



Un món per descobrir
Connectivitat Neuronal

Xarxa neuronal complexa 
 Biológicamente plausible, explícita. 
 Alta complexitat computacional, difícil 

d’estudiar analíticament.

→
→



Un món per descobrir
Connectivitat Neuronal

Models minimals 
 Interpretables, més senzills d’estudiar. 
 Abstractes.

→
→

Models estocàstics 
de difusió

Models de rate

Xarxa neuronal complexa 
 Biológicamente plausible, explícita. 
 Alta complexitat computacional, difícil 

d’estudiar analíticament.

→
→



Disseny de xarxes neuronals
Connectivitat Neuronal

38

[Grabenhorst et al. 2019]

[Julia Badyna, aprenentatge per reforç en ratolins]

Temps de Reacció

Elecció



Evaluar
l’evidència

Decisió!

Que he d’escollir? Estímul extern

Disseny de xarxes neuronals
Connectivitat Neuronal

Camí ràpid d’aturada
Camí directe: afavoreix l’elecció 
Camí indirecte: s’oposa a l’elecció 
Camí hiperdirecte: evita una elecció



Disseny de xarxes neuronals
Connectivitat Neuronal

C
dV
dt

= − gL(V(t) − VL) − gTh(t)H(V(t) − Vh)(V(t) − VT) − Isyn(t)

Model de neurona

dh
dt

= −
1 − h(t)

τ+
h

, si V < Vh

dh
dt

= −
h(t)
τ−

h
, si V ≥ Vh

Isyn(t) = gAMPAsAMPA(t)(V(t) − VE) +
gNMDAsNMDA(t)(V(t) − VE)

1 + e−0.062V(t)/3.57

Integrate-and-fire-or-burst model

+gGABAsGABA(t)(V(t) − VI)

dsAMPA

dt
= ∑

j

δ(t − tj) −
sAMPA

τAMPA

dsGABA

dt
= ∑

j

δ(t − tj) −
sGABA

τGABA

dsNMDA

dt
= α(1 − sNMDA)∑

j

δ(t − tj) −
sNMDA

τNMDA

A30Hz

time

Ajustar les dades del model a les observades: FR, % elecció i temps de reacció



Disseny de xarxes neuronals
Connectivitat Neuronal

Poblacions elecció A
Poblacions elecció B
Poblacions comunes



Disseny de xarxes neuronals
Connectivitat Neuronal

Regla de plasticitat
Com varien les connexions sinàptiques?

A30Hz

time

Dissenyar regles de plasticitat per canviar sistemáticament certes connexions

Variació de les connexions corticostriatal 
segons l’experiència anterior.

 indica el canvi en les conductàncies i 
depèn de la quantitat de dopamine 
disponible en el sistema i, segons l’activitat 
neurona segons una traça d’elegibilitat .

w(t)

E(t)

gsyn(t) ← gsyn(t) + w(t)

dw
dt

= [αwE(t) (wX
max − w)]+f(KDA)

+ [αwE(t) (w − wX
min)]−f(KDA)



• Estudi sobre quines poblacions influeixen més en la presa de decisions. 

• Incorporació d’altres neurotransmissors que afecten a l’aprenentatge: seretonina, estrògens. 

• Modelar com el cervell aprèn a aturar una acció en un cert moment. 

• Modelar l’aprenentge considerant aspectes com la Motivació i la necessitat

Target Reaction time

[Preprint C.Giossi et al]

[En curs, A.O’Hare]

Disseny de xarxes neuronals
Connectivitat Neuronal

[Vich et al. 2022]

f(KDA)Modificacions en el nivell de dopamina disponible al model: 

Modificacions en el circuit hiperdirecte

[En curs]



Reducció del cost computacional
Connectivitat Neuronal

Les xarxes neuronals biològiques requereixen

Realització de moltes simulacions

Integració numèrica de sistemes d’alta 
dimensió

Tractament de dades des de un punt de vista 
estadístic

Simulacions d’alt cost computacional



Reducció del cost computacional
Connectivitat Neuronal

Les xarxes neuronals biològiques requereixen

Realització de moltes simulacions

Integració numèrica de sistemes d’alta 
dimensió

Tractament de dades des de un punt de vista 
estadístic

Simulacions d’alt cost computacional

Necessitat de models minimals que conservin 
les qualitats de la xarxa desitjades!



Simplifiquem la tasca…
Connectivitat Neuronal

Considerem una xarxa neuronal biològica només del còrtex visual

Neurona Excitadora

Neurona Inhibidora Matriu de connectivitat

Les condutàncies sinàptiques de 
tota la xarxa es van debilitant 

segons un factor  fD



Reducció del cost computacional
Connectivitat Neuronal



Reducció del cost computacional
Connectivitat Neuronal

DOWN

UP



Reducció del cost computacional
Connectivitat Neuronal

Quina dinàmica neuronal provoca la 
terminació d’un UP state?

DOWN

UP

Quina dinàmica neuronal dóna lloc als canvis en 
l’activitat quan augmenta la depressió sinàtica?



Reducció del cost computacional
Connectivitat Neuronal

En la xarxa neuronal es poden intuïr cert 
comportaments dinàmics

Existència d’un punt de bifurcació 

La xarxa passa de presentar una espècie 
d’homoclina a oscil·lar cap a un atractor.



Reducció del cost computacional
Connectivitat Neuronal

En la xarxa neuronal es poden intuïr cert 
comportaments dinàmics

Existència d’un punt de bifurcació 

La xarxa passa de presentar una espècie 
d’homoclina a oscil·lar cap a un atractor.

Model de Rate per analitzar aquesta dinàmica



Model de rate

Reducció del cost computacional
Connectivitat Neuronal

[En curs, R.M Delicado-Moll]
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