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iIOoNs neuronals provoc
canvis en el comportament dels essers VIUS.
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wd ° tipus de connexions: Excitadores i Inhibidores.
La perdua del balang entre elles pot causar certes |
~malalties neurologiques.
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Quina quantitat d'informacio rep una neurona de la resta?

Com canvien les connexions neuronals en tasques daprenentatge?




Unaneurona. un circult

El model neuronal

En cada neurona s'hi amaga un circuit,
| en la modelitzacio daguest, un intent dentendre com pensa el cervell.



Unaneurona. un circuilt

El model neuronal

Exemples d’activitats neuronals V = potencial intracellular - potencial extracellular

Estat de repos Potencials d'accio (spikes)
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Unaneurona. un circuilt

El model neuronal
20 mv | Activitat neuronal extreta d'una neurona V(¢)
. DADES EXPERIMENTALS
GO/nr':/ MW

dV
CORRENTS I — =f(V(),x(?)) — L, (D) + 1,
EXTERNES _ T dt
EXTRACEL-LULAR R . y ] . | dx
TRy b :H’ ; jH’ ; T[] T — = 8V, x(1),
| CORRENT SINAPTICA |:> | C |:>
(PROVE D’ALTRES Vi Ve —— Vi — Vi syn(t) — gE(t)(V(t) _ VE) + gl(t)(V(t) — V])
NEURONES, I, (1)) -[
Immienular V(1) membrane potential (voltatge);

gi(1), g;(t) conductancies



Unaneurona un circuit

Exemple de model neuronal

Model de Hodgkin-Huxley

dV

Extrac;cllu]ar E — = gL(V - VL) — gNamSh(V _ VNa) — gKn4(V _ VK) R Isyn(t) T Iapp’
i ‘ .

blt wet]  wt] wf 7" — ¢xx°°( ‘)/ = x€{mnh)

Esyn &w.-/H’ 81«/8’ ar. [} 1. t TX( )

Vi Ve —— Vi = V. = I8 n(t) = gE(t)(V(t) — VE) + gl(t)(V(t) — VI)
'[ Y

;ntra({cl]ular V(1) membrane potential (voltatge);

x(1); x € {m,n, h} probabilitat d’entrada o sortida de ions;
g,(t) conductancies amb i € {L,Na, K, E, I};
V. potencial revers amb i € {L,Na, K, E, I};

1,,, corrent aplicada (parametre de control).

Reduible a 2D a causa de les diferents escales temporals



Unaneurona, un circuit.

El model neuronal

Patrons observats en les activitats neuronals

Patrons en estat de repos o regim de spikes Patrons del Bursting

[Gerstner et al 2014] [Classificacio de Rinzel, 1980s]
A B (al) Square Wave (b1)
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Unaneurona un circuit

dV
— = f(V(9), x(?)) — L, (1),

dr

dax

Liyn(t) = gg(O)(V(D) = Vi) + g(O)(V(@) = V))

- fV@X0) = g, (V= V) + Y 8ion®V = Vi)

V(f) membrane potential (voltatge);

- gp(1), g/(t) conductancies

—— :{>

|

i = f(V(®),x(1)) — I, (1)
dr ’ Sy
dx

Lyn(1) = g)(V(1) = Vip) + g(0)(V(2) = V)

amb f(V(¥),x(¢¥)) i g(V(¢),x(t)) funcions
lineals a trossos




Unaneurona un circuit

Model de McKean (1970) Model de Doi-Kumagai

| V=f(V)—y—Z— syn(t)

y=n(V—ay),
z=¢e(V—-bz),

amb  f(V)==-V+|V4+1|-|V-1|

J CV=AV) —w —wy = L, (V, 1),

amb

-V V<all,
fVy=<V—-—a al2<V<{+a)l2,
1-V V>+a)l2.

V := ptencial de membrama,
L, (t) := corrent sinaptica,
v, Z := corrents de la membrada,

Syn(V ) = gSyn(t)(V Syn) 0<e<x1,n,a, b:=parametres del model.

|

V := ptencial de membrama,
gsyn(t) := conductancia sinaptica,

| w := corrents de la membrada,
}’ 0 < C < 1 := capacitancia de la membrana

Wo, Vi, 7, a4, Vsyn := parametres del model.




Estimacio de conductancies.

Un problema invers

Entre els corrents del cervell hi ha secrets que cap microscopi pot revelar: les conductancies sinaptiques.
Nomes les matematiques, amb els seus metodes destimacio, ens permeten entreveuren el rastre.



Estimacio de conauctancies

[mportancia de conexier la contibucio excitadoral la inhipidora

Poblacio de neurones
excitadores

Neurona » 20 mv | MJL l”w JL
objectiu am R A o

Poblacid de neurones e Observable
inhibidores

- Experimentalment, les conductancies sinaptiques no es poden extreure directament de lo
neurona, de manera que cal utilitzar metodes inversos.

. Lalteracio de l'equilibri entre les sinapsis excitadores i inhibitories es la causa de diversos
trastorns neurodegeneratius.



Estimacio de conauctancies

[mportancia de conexier la contibucio excitadoral la inhipidora

Problema Invers Dificultats a tenir en compte

(dv . . i
= AV XO) = Ly ©) + Loy » No-linealitats en el potencial de

= g(V(1), x(1)), membrana (V ;é O)

Ly(D) = ge(O(V() = V) + g, (V) = V) .

Dades I Model Matematic
Experimentals (model base)

Disseny B

dr
dax
| dt

P Variabilitat a través de diferents
extraccions de dades.

Soroll en els mesuraments.

v

S Procediment » Absencia d’un model base universal.
8E(t) | g](t) destimacio




-stimacio de conauctancies

[mportancia de conexier la contibucio excitadoral la inhipidora

Aol o 100-200%)

—
| Ia
VL, )=V, (f) + —2

- T gon(®)

amb

gsyn(t) — gE(t) + gl(t) T 8L

HVe+ 2/(0)V,+ g,V
Veff(t) _ geOVp+ gDV, + g, L
l Zyn(?)

» Primers models: Suposaven V = 01 corrents 10niques = 0.

| | CORRENTS

EXTERNES

|

> Guillamon et al., 2006: L’estimaci6 no es aplicable en zones de spikes (errors del

MEDI
EXTRACEL-LULAR |

N

CORRENT SINAPTICA
(PROVE D’ALTRES

NEURONES, 1,,,,(1))



-stimacio de conauctancies

[mportancia de conexier la contibucio excitadoral la inhipidora

P NNt s A

*WMW‘\‘HM A i AN

» Primers models: Suposaven V = 01 corrents 1oniques = 0.

> Guillamon et al., 2006: L’estimaci6 no es aplicable en zones de spikes (errors del

100-200%)

» Vich 1 Guillamon, 2015: les esimacions realitzades en les zones de repos (sub-llindar)

també presenten males estimacions quan hi ha presencia de corrents 10nics actius.

0.71 5 1.47 5 CORRENTS
- °F (T EXTERNES ‘
0.6 9E estim 12 - = =Y estm 1'.’:
| i ) |
o0 AN __ o8} i i1 |
«.E : ' o~ :\nl [ 1Y |
g o4 A | 5 o 'A‘r\o '”\'q. Vo |
1 I - N “
E o3} Ly :""\ " I" A £ o4 1\ .,' ooy CORRENT SINAPTICA
CI Ao :‘v \"\ ! \ W e o> v ' . | (PROVE D’ALTRES I
02) r" “ ’,‘: " .\ .; ! NEURONES, I,,,,(1)) ]
| ! ' |
R VATY “I’\' o 'y Jg
—mw }
% 100 200 300 400 500 04 100 200 300 400 500
time (ms) time (ms) |




Estimacio de conauctancies

[mportancia de conexier la contipbucio excitadora i la iInhibidora

> Primers models: Suposaven V = 01 corrents ioniques = 0.

» Guillamon et al., 2006: I’estimaci6 no es aplicable en zones de spikes (errors del

100-200%)

> Vich 1 Guillamon, 2015: les estimacions realitzades en les zones de repos (sub-llindar)
tamb¢ presenten males estimacions quan hi ha presencia de corrents 10nics actius.

> Vich et al., 2015-2017: Models quadratics per millorar les estimacions realitzades
a I’activitat sub-llindar.




Estimacio de conauctancies

[mportancia de conexier la contibucio excitadoral la inhipidora

Model determinista | o | |
Per [a teoria geometrica de Fenichel, sabem que si

I

PV estudiom el cas limit € = 0, la varietat critica de Ia
e— = aV*(1) — w(r) + I,,(t) + E , | mi
o syn app’ perturbacio es mante. Llavors, integrant al cas limit:
dw
—=aV(r) — A —w(7).
dt
T = te; V(¢) variable rapida; w(¢) variable lenta. SISTEMA SLOW-FAST |

'Corba V-1 d'una neurona motor

Vm at rest (mV)

e V-| points
— quadratic fit
— linear fit

-1 0 1 2 3
Injected current (uA/cm?)



Estimacio de conauctancies

[mportancia de conexier la contibucio excitadoral la inhipidora

Model determinista

dw
—=aV(t) — 1 —w(7).
dr

0 =aV%(1) — w(r) + Ly (T) + 1),

Per la teoria geometrica de Fenichel, sabem gque si

estudiam el cas limit

e = 0 la varietat critica de la

oerturbacio es mante. Llavors, integrant al cas limit:

Vm at rest (mV)

T = te; V(¢) variable rapida; w(¢) variable lenta. SISTEMA SLOW-FAST |

'Corba V-1 d'una neurona motor

e V-| points
— quadratic fit
— linear fit

-1 0 1

2 3

Injected current (uA/cm?)

» W(t)=¢e * (W(TO)ETO +

I.(7)=—aV¥()+e"

syn

L, (1) = gg()(V(1) = Vi)

rT

UTO

(aV(s) — l)ds) :

(W(To)efo + A (aV(s) — /I)ds) — 1y, -

UTO

+ g, (V) — V)



-stimacio de conauctancies

[mportancia de conexier la contibucio excitadoral la inhipidora

Model determinista | . | |
- o Per la teoria geometrica de Fenichel, sabem que si

| | . | .
| estudiam el cas limit € = 0, la varietat critica de la
oerturbacio es mante. Llavors, integrant al cas limit:

0 =aV%(1) — w(r) + L, (D) +1,,,

dw
—=aV(t) — 1 —w(7).
dt

rT

» W(t)=¢e * (W(TO)ETO +

(aV(s) — /I)ds) :

UTO

T = te; V(¢) variable rapida; w(¢) variable lenta. SISTEMA SLOW-FAST |

rT

[,(7) = —aV¥t) +e" (W(To)e’”o +

UTO

(aV(s) — l)ds) -1,

01¢

—_ - —9,
N.0&+ ---gE,cstirr ! . 0.2 "‘gl,estl'n
M H :
~ 0.06f ) 015 f . ! :a '2‘1,
. . e ‘ “ i N :: h ‘
Considerant dos potencials de membrana diferents, % ooe, WA S p ; y R R
—~ ' E o1 : b 4 ;ldi K i
corresponents a dos corrents aplicats Iapp diferents, & 02/ & é::’ ¢y v i
i NE !
0.05 (" i
podem separar entre gx(t) i g/(1). ° '
-4L020 160 260 360 460 560 U0 160 260 360 460 560

time (ms) time (ms)



Estimacio de conauctancies

[mportancia de conexier la contibucio excitadoral la inhipidora

|

Model estocdstic

— —

= (aV* + bV + ¢)dt + 6dW,

a =

b =

C =

m|+~m|~m|@

9

(—2aVy — gp(t) — g,(1)),

(aVz+ ge(OV + g(OV, — I +

app)

Una SDE de segon ordre, no es pot resoldre directament.
Emprant el metode de maxima versemblanca (MLE), es pot
resoldre numericament.

o ©
~N @

o

N

3
o
o

excitatory conductances (mSIcmz)
o
. (—5 .
inhibitory conductances (mS/cm?)
o <
w (&)

o

N
o
»

o -
N

. . -
o —
T Ll T L X

o
—
o

M

1000 2000 3000 4000 5000 "0 1000 2000 3000 4000 5000
time (ms) time (ms)

o
o
a

oO
|
o
N

Suposant les conductancies estacionaries en una finestra de 50ms



Estimacio de conauctancies

Importancia de conexier la contibuclo excitadora 1 la inhibidora

» Primers models: Suposaven V = 01 corrents 1oniques = 0.

> Guillamon et al., 2006: L’estimaci6 no es aplicable en zones de spikes (errors del

0
A W 100-200%)

> Vich 1 Guillamon, 2015: les estitmacions realitzades en les zones de repos (sub-llindar)
també presenten males estimacions quan hi ha presencia de corrents 10nics actius.

KMW”MMMWMJ,M

> Vich et al., 2015-2017: Models quadratics per millorar les estimacions realitzades
a I’activitat sub-llindar.

&NW’NWVMW)\%MLM

> Vich et al., 2017-2020: Primers models per estimar g, (¢) en regim d’spikes

A, I I o et A



Estimacio de conductancies
Regim d'Spikes

Model Lineal a Trossos

[ — e ————— ———

Considerant el model McKean, i aprofitant els avantatges
destar en un ambient “lineal a trossos”...

N |
N
m A
AN
UL pm
d e




Estimacio de conauctancies

Regim d'Spikes

Model Lineal a Trossos

Considerant el model McKean, i aprofitant els avantatges
destar en un ambient “lineal a trossos”...

| TM ,down

|

Esyn

q.M

= ——1n

AgM

\

yd —-1,)B, + K,

yd—-1,)B, +K,,_,

yd —1L)B, + K

}/(1 o IZ)Bm + Km,d

)

* A ] /IqM son els valors propis

rapid, respectivament. Depena

1 n yd — I,)B;

/IS,L y(d —1)B;, — K, ,
1 n vy — 1,)B;

/1s,L y(I — 5L)B, — K, ,

ateral-lent i central-

encia no lineal amb g,

« K'siB'sfuncions donades. Dependencia no lineal amb

T(gsyn) — TM,up T TL T TM,down T TR'

Sabent el periode 1, podem trobar g,



Estimacio de conductancies
Regim d'Spikes

Model Lineal a Trossos

[ — e ————— ———

1 ( \
| | | 1 I—I)B. +K 1 I—1I)B
Considerant el model McKean, i aprofitant els avantatges Ty =—In =15, + %, , T,=—1n AV
/ . - ” ’ /lq,M }/(I_ Il)Bm + Km,u j“S,L }/(1_ Il)BL o KL
d'estar en un ambient “lineal a trossos”... \ )
( \
| B 1 I1—1,)B
. _ 1 || =B, +K, T =——In yd —h)B,
M . down /lq,M \ }/(1— Iz)Bm 4 Km,d )’ /15,L }/(1— 12)BL - KL

T(gsyn) — TM,up T TL T TM,down T TR'

Sabent el periode 1, podem trobar g,




Estimacio de conductancies
Regim d'Spikes

Model Lineal a Trossos

[ — e ————— ———

Considerant el model McKean, i aprofitant els avantatges
destar en un ambient “lineal a trossos”...

( \
. L || U= 1)B, +K, _ | y({ —1)B,
Mup = 510 1= n ’
Ag M yd - 1)B, +K,, A y( —1))B, —

( )
| N 1 (I-1)B
1 I-1L)B, +K y( — )by
TMdown:_ln " 2) - - ’ TR:/I ln( (I — 1,)B; — ),
: /Iq,M \ }/(1_12)Bm+Km,d ) s,L Y 2)PL
T(gsyn) — TM,up T TL T TM,down T TR'
| Sabent el periode 1, podem trobar g,
o TENT(Y, oY)

wlzge inw)

o.
LU
L
usSr
LR
N
oz
o1
or

L

1 2 N
gs(y%, g, .88




Estimacio de conductancies
Regim d'Spikes

Model Lineal a Trossos

S = ( \
. . . I-1)B, +K 1 I-1)B
Considerant el model McKean, i aprofitant els avantatges T,,,, = —In =15, + %, , T,=—1n = 1)5, ,
, : " " " Agm yd —1)B, + K AsL yd —1))B; — K}
destar en un ambient “lineal a trossos”... \ )
( \
| T B L In }/(1 - IZ)Bm + Km TR — | In }/(I _ IZ)BL ,
O gy || 10 = B+ K| ] Ap \[1U—-DIBL= K,
T(gsyn) — TM,up T TL T TM,down T TR'
| Sabent el periode 1, podem trobar g,
0.8-
9evn
| o 0.75- —Spline
U( % 0.7~ M | ‘ } ‘ °rnestm
e by .
Foe WY s ;, S S TV a g AP Y
| 0.6 -
I (l) ‘.IS 110 15 20 25 30 35 40 45
time units

50



-stimacio de conauctancies

Regim d'Spikes

—— — —— — e —————— — E— ___________ I

1 —Extensio a models més realistes...

A. DESIGN THE ESTIMATION PROCEDURE

[Preprint R.Delicado et al.]

| B. TEST THE ESTIMATION PROCEDURE

C. USE THE ESTIMATION PROCEDURE

Create in sillico data l

Create V(¢) for
specific

Compare
|_gEActual "~ " Estimated — J1Actual " ‘91.Estimated| @ g E(t)’ gl(t)

with
i : )\W; | 8.41), &,
O'ZPM\»M
100 200 360 l

0.41 Mn - (N

Conductances (pSfcmz)

MY A
) )
_ M . Estimate
» Dl ge(r) and (1)
400 500 600 700

t(ms)

|

Fit the target
neuron with a

computational @ Observable

Base Model model i |
from the neuron isolated -—> ex:aetam‘;l;)ta
v
@ Extract
Le=T T - the amplitude of each spike (4;)
- - - the inter-spike period (7))
(® Extract the
relation between Estimate the
(DT, g, g conductances
Q) A, g5 & ge(t) and g(¥)
| S l‘



Estimacio de conauctancies

Regim de Bursting - Treball futur

N
I

P S’ha observat, en el model de Doi-Kumagai,

—_—

|

s
5
28
© o 0 ..
%g . mn | ﬂ que el nombre d'spikes del burst, la seva
S -1 e e A 11103 ' . . . ,se
- L (R | (1 | amplitud i la longitud de I'interval de temps
° > 1000 e () 2500 3000 entre 2 bursts diferents, canvia segons el
512 T sesig 18 parell de condductancies gz(7) i g;(¢)
E 1000! Bos " .
£ 800 155 | |58 1| | considerats.
- x’ | é%s.s ' %;L%O'Sb \J\/
S | 28 | <8 . , ® 3 observables, 2 parametres a estimar.
0 0.05 0.1 0 """ 005 0.1 0 0.05 0.1
gsyn gsyn gsyn

“Slow Passage” i “Spike Adding”



Estimacio de conauctancies

Regim de Bursting

“Slow Passage” a traves de bifurcacions

els lents.

[ Tesi J. Penalva, 2024 ]

_es transicions de l'estat de repos al burst i viceversa se
es guals nomes es poden desxifrar completament anal

Aguests siste
comportame

parametre, el sistema

Mes Proo

Nt dindm

ic fent guan, movent un cert

ntenen com a bifurcacions dinamiques,
itzant tant els subsistemes rapids com

Jeixen un retard en el

seu subsistema rapid.

‘ravessa una bifurcacio de

-enomen de bursting degut al pas
ent a traves de la bifurcacio.



Estimacio de conauctancies

Regim de Bursting

Spike Adding

Afegiment de nous spikes durant la fase de bursting o mesura gue varia un parometre del

sistema.

1.00 1 1.00

U
C
C

0.65

0.30 ' 0.30 '
—0.5C00 -0.4775 -0.4550 —-0.5000 -0.4775 -0.4550

I I

[ Tesi J. Penalva, 2024 ]

oresenta el subsis

N element clau er
spike adding es e

el fenomen
0as lent a traves

e la connexio homoclinica que

ema rapid.



Connectivitat Cerepral

Un mon per descoprir

L'univers es infinit i llunya; el cervell, petit i proper.
Pero entenem millor els astres que la nostra propia ment.



Connectivitat Neuronal

Un mon per descoprir

Xarxa neuronal complexa

— Biologicamente plausible, explicita.

— Alta complexitat computacional, dificil
destudiar analiticament.



Connectivitat Neurona

Un mon per descoprir

correct RTs

Models estocdstics
de difusio

Ie

!
ext I ext

Xarxa neuronal complexa

o, | o Models minimals
— Biologicamente plausible, explicita.

— Interpretables, mes senzills d'estudiar.
— Abstractes.

— Alta complexitat computacional, dificil
destudiar analiticament.



Connectivitat Neuronal

Disseny de xarxes neuronals

Cue 1 (350 ms
+ 350 ms ISI)

-

Cue 2 (350 ms
+ 350 ms ISI)

Self reward
2

|Grabenhorst et al. 2019]

Eleccio
1 Temps de Reaccid

[Julia Badyna, aprenentatge per refor¢ en ratolins]
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Connectivitat Neuronal

Disseny de xarxes neuronals

Estimul extern

GPe Striatum
Cami directe: afavoreix l'eleccio
Cami rapid d'aturada > Cami indirecte: soposa a leleccio
Cami hiperdirecte: evita una eleccio
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Connectivitat Neuronal

Disseny de xarxes neuronals

Ajustar les dades del model a les observades: FR, % eleccio i temps de reaccio

[t




Connectivitat Neuronal

Disseny de xarxes neuronals
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Connectivitat Neuronal

Disseny de xarxes neuronals

Dissenyar regles de plasticitat per canviar sistemdadticament certes connexions

[




Connectivitat Neuronal

Disseny de xarxes neuronals

. Estudi sobre quines poblacions influeixen mes en la presa de decisions.

[Vich et al. 2022]

. Incorporacio daltres neurotransmissors que afecten a laprenentatge: seretonina, estrogens.

[En curs]

- Modelar com el cervell Oprén a aturar una accio en un cert moment.
[Preprint C.Giossi et al]
I—> Modificacions en el circuit hiperdirecte .

- Modelar [aprenentge considerant aspectes com la Motivacio i la necessitat .

[En curs, A O'Hare]

Target Reaction time

I-» Modificacions en el nivell de dopamina disponible al model: f(Kp,) I'm thlrsty



Connectivitat Neuronal

Reduccio del cost computacional

Les xarxes neuronals biologigues requereixen

Integracio numerica de sistemes dalta . | : |
Simulacions dalt cost computacional

Tractament de dades des de un punt de visto

. Realitzacio de moltes simulacions
estadistic



Connectivitat Neuronal

Reduccio del cost computacional

Les xarxes neuronals biologigues requereixen

Integracio numerica de sistemes dalta . . : |
dimensid Simulacions dalt cost computacional

Tractament de dades des de un punt de visto
estadistic

Realitzacio de moltes simulacions

Necessitat de models minimals que conservin

les qualitats de la xarxa desitjades!



Connectivitat Neuronal

Considerem una xarxa neuronal biologica nomes del cortex visual

Neurona Excitadora Les condutancies sinaptiques de
Extracellular .
tota la xarxa es van debilitant
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onnectivitat Neuronal

- Excitatory firing rate === [nhibitory firing rate AMPA NMDA Prel e (GABA Prel
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onnectivitat Neuronal

- Excitatory firing rate === [nhibitory firing rate AMPA NMDA Prel e (GABA Prel

fo=100  f,=097  fp=0.94 £, =0.75 £, = 0.60

300

=H= i ! = =
250 I8 ; - | =5 $ -
= i : T3 -
(@) 200 g '3 & | -
— : : (= =
~ 1508 i = =
O 1008 i B j -
Z soff £ | &3 =
5 § | | o '
~ 175] | 160 140 ‘ 38
L s 140 120 e
125
% 100 wol 103 20
— 80 6 g
o 75 60 60 ) 30
50| | .
a0 40 20
& 2| ) 20 | 20 J -
0| - 0 -4 0 ’
~ :
~ 1o 1.00 1.00 =G 10
= 0.95 0.95 0.9 0.9
e 0.90/ g:gg 0.8 0.8
: 1.00 0.85 0.80 0.7 0.7
L 0.98 0.80 0.75 0.6 0.6
ps: 96 0.75| 0.70 , 0.5
0.96 0.65 0.5 0s
0.70 0.60 '
0 2 4 6 8 10 0 7 4 I 8 10 0 2 4 6 g 10 0% 2 1 & 10 12 14 16 18 20 0 2 4 6 8 10

Time (s) Time (s) Time (s) » Time (s) Time (s)



Connectivitat Neuronal

IFR (sp/s) Neuron #

Prel (STD)

- Excitatory firing rate =~ == Inhibitory firing rate
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Quina dinamica neuronal provoca la

terminacio d’'un UP state?
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Quina dinamica neuronal dona lloc als canvis en

‘activitat quan augmenta la depressio sinatica?

10




Connectivitat Neuronal

Reducclio del cost computacional
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En la xarxa neuronal es poden intuir cert

comportaments dinamics

» Existencia d'un punt de bifurcacio

» La xarxa passa de
d’homoclina a osci

presen

ar Una especie

lar ca
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Connectivitat Neuronal

Reducclio del cost computacional
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En la xarxa neuronal es poden intuir cert

comportaments dinamics

» Existencia d'un punt de bifurcacio

» Lo xarxa passa de presentar una especie
d'’homoclina a oscil-lar cap a un atractor.

Model de Rate per analitzar aquesta dinamica




Connectivitat Neuronal

Reducclo del cost computacional

Model de rate

Tele = -re‘*'Fe(weesDesFere-weisDisFiri'*'ngt-ae)p
Tifi = —ri+Fi(WieSpeSrele— WiiSpiSkiTi+ by, — ai),
Taee = —Qe+ JefDele,
Tqidi = —ai+]Jifpili,
pSTD
TspSpe = Py 0 -sDe-(l+Gpe(re)( ;D 1)]
oo
TspiSDi = Pgm-sor(l*-Gm(ri)( }Di l)).

[En curs, R.M Delicado-Moll]
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