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És estable el sistema Sol-Júpiter-Saturn?

L’objectiu d’aquesta xerrada és convèncer el públic de l’obvi: en el
sistema (pla) Sol-Júpiter-Saturn, la probabilitat que tots dos
planetes girin al voltant de l’estrella indefinidament amb un
moviment quasiperiòdic és positiva.
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Introducció
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Newton i l’origen del Problema dels Tres Cossos

Isaac Newton, als Philosophiæ Naturalis
Principia Mathematica (1686), Llibre 3,
després de considerar les dues primeres lleis
de Kepler a la Proposició XIII, Teorema XIII
(una aplicació de la seva Proposició XIV, Te-
orema VI, del Llibre 1), ja va discutir la ne-
cessitat d’ampliar l’estudi perquè no es po-
dia menysprear l’acció de Júpiter sobre Sa-
turn.

El Problema dels Tres Cossos havia estat formulat.
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Avís!

No aquest llibre

Sobre l’estabilitat d’un sistema Sol-Júpiter-Saturn 6 / 44



Estabilitat i caos

Aquesta qüestió i les seves relatives (com són les òrbites en general
per al Problema dels Tres Cossos?) van ser la pastanaga que va fer
avançar una part important de les Matemàtiques.
Grans noms com Lagrange, Laplace, Poincaré, Lindsted, i un llarg
etcètera, van impulsar aquesta qüestió.
Hi havia dues visions aparentment excloents:

L’estabilitat de les solucions, on els
planetes orbiten al voltant del Sol amb
un moviment quasiperiòdic ad
perpetuum;
L’existència de caos, on el moviment
esdevé impredictible.
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KAM arriba per a resoldre el problema de l’estabilitat

Als voltants dels anys 60 del segle XX, una nova teoria va emergir
per per demostrar la persistència del moviment quasiperiòdic en
Sistemes Hamiltonians, la teoria KAM, pels cognoms dels seus
creadors: Kolmogorov, Arnold, Moser.
Formulació i resultat clau: per a una pertorbació prou petita d’un
sistema integrable no degenerat, persisteix la gran majoria de
tors invariants (que contenen moviment quasiperiòdics).
(Els tors amb freqüències ressonants es trenquen, creant caos.)
Metodologia: s’aprofita l’existència de coordenades d’acció-angle
per al sistema no pertorbat, i s’utilitzen procediments de forma
normal per simplificar el Hamiltonià i fer aparents els tors
invariants.
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Els herois!

K A M
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Aplicabilitat al problema planetari

Desafortunadament, o no, el problema planetari és degenerat
(no compleix la condició KAM clàssica), però Arnold va provar la
seva estabilitat en el cas d’un Sol i dos planetes movent-se sobre
un pla.

Vam haver d’esperar a aquest segle per poder aplicar la Teoria
KAM superant les degeneracions del problema planetari espacial,
amb els treballs de Herman i Féjoz, i Chierchia i Pinzari.
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Objeccions d’Hénon

Ainsi, ces théorèmes, bi-
en que d’un très grand in-
térêt théorique, ne semblent
pas pouvoir en leur état actu-
el être appliqués à des problè-
mes pratiques, où les perturba-
tions sont toujours beaucoup
plus grandes . . .

– Michel Hénon, Exploration numerique du pro-
bleme restreint. IV. Masses egales, orbites non
periodiques (1966)

Jacques Laskar, Michel Hénon and the Stability of the Solar System (2014)
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CAP a CAPs!

Així, aplicar directament el teorema KAM per a problemes realistes
condueix a resultats molt pessimistes.
Una opció per obtenir cotes realistes és mitjançant Computer
Assisted Proofs (CAPs) en models simplificats per validar els
càlculs clàssics de forma normal. (En particular, es consideren
models restringits, models seculars, o models truncats on les
expansions s’han tallat).
Hi ha hagut avenços molt importants en l’aplicació d’aquestes
tècniques a problemes planetaris (Celletti, Chierchia, Giorgilli,
Robutel, Locatelli, Sansottera, Caracciolo, Danesi, ...).

Però les mides de les pertorbacions són encara molt pessimistes pel
problema de tres cossos, pla, sense simplificar, obtenint masses de
l’ordre 10−85 masses solars i posant a Saturn a 5.2×1012UA
(Castan, 2017).
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Una nova esperança: el mètode de parametrització

Un canvi de paradigma va ser el Mètode de Parametrització (MP)
[Cabré, Fontich, de la Llave 2003a, 2003b, 2005], que en KAM era
la teoria KAM sense coordenades angle-acció [de la Llave 1999; de
la Llave, González, Jorba, Villanueva 2005].
En lloc de fer canvis de coordenades a l’espai de fase, el MP
consisteix a fer correccions a les parametritzacions dels objectes
cercats en qüestió, i en provar resultats de convergència.
Els mètodes es poden traduir en algorismes de còmput, i els
teoremes permeten validar els resultats.
Aquest programa es va completar per a tors invariants hiperbòlics
(i les seves varietats invariants) en sistemes quasiperiòdics, des de
resultats teòrics, algorismes i implementacions [Haro, de la Llave
2006a, 2006b, 2007], fins a arribar a CAPs [Figueras, Haro 2012;
Haro, Sandín 2024].
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CAP KAM SENSE CAP!
El MP, amb combinació amb CAPs, ha tingut èxit en problemes
KAM, lluny de ser integrables:

Existència de tors invariants en aplicacions simplèctiques, com
les aplicacions estàndard, estàndard non-twist, i de Froeschlé
[Figueras, Haro, Luque 2017];
Cotes inferiors (i superiors) rigoroses de la mesura m del
conjunt de paràmetres en què l’aplicació estàndard del cercle
és conjugada a una rotació [Figueras, Haro, Luque 2020].
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El problema Sol-Júpiter-Saturn
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El projecte SJS

Objectiu: Demostrar l’existència de moviment quasiperiòdic en el
sistema pla Sol-Júpiter-Saturn (per a les dades observades).
Aquest és un projecte a llarg termini, que vam començar amb
l’Alejandro Luque.
El projecte inclou:

teoremes KAM a posteriori [Figueras, Haro 23];
mètodes numèrics basats en tors traslladats [González,
Haro, de la Llave 13, 22, Figueras, Haro 25];
estratègies de validació amb FFT [Figueras, Haro, Luque 17].

Dificultats addicionals: dimensió, consideració de tot el Hamiltonià,
proximitat a degeneració ...
Explicarem aquí els mètodes numèrics, i els resultats. Falta
realitzar la CAP.
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Les equacions en coordenades de Delaunay

El Hamiltonià del problema pla d’(1 + n) cossos, en coordenades
de Delaunay (ℓ, g, L,G), HD : T2n × R2n → R, és de la forma

HD(ℓ, g, L,G) =
n∑

i=1

−m3
i

2L2
i

+ µ H1
D(ℓ, g, L,G),

on:
les unitats de massa, distància i temps s’escullen de forma que
la massa del Sol és 1 i el període d’una òrbita circular de radi 1
és 2π (de forma que la constant de gravitació universal és 1);
les masses planetàries són µmi, on µ és petita.

Notem la famosa degeneració en el problema d’(1 + n) cossos: la part
integrable només depèn de les accions L i no de les accions G!
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Reducció pel moment angular total
Fixant el moment angular total, Ĝn, que és una integral primera,
obtenim el Hamiltonià reduït HĜn

: T2n−1 × R2n−1 → R donat per

HĜn
(ℓ, ĝ, L, Ĝ) =

n∑
i=1

−m3
i

2L2
i

+ µH1
Ĝn
(ℓ, ĝ, L, Ĝ),

amb ĝ = (ĝ1, . . . , ĝn−1) i Ĝ = (Ĝ1, . . . , Ĝn−1), on

Ĝs :=
∑

1≤k≤s
Gk,

i ĝs és el conjugat simplèctic de Ĝs.

Avaluar HĜn
no és difícil: passar de coordenades de Delaunay a cartesianes

requereix resoldre una equació fàcil (l’equació de Kepler), compondre, i la
reducció de Ĝn és explícita. A més, obtenir-ne les derivades parcials també és
fàcil: podem fer-ho a mà si l’ordre és petit, o utilitzar la diferenciació
automàtica.
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Dades per al sistema Sol-Júpiter-Saturn

En el nostre cas, n = 2, i les masses relatives de Júpiter i Saturn
són 0.9546 · 10−3 i 0.2856 · 10−3, de manera que
m1 = 0.9546,m2 = 0.2856, i µ = 10−3.
De la tercera llei de Kepler obtenim que les freqüències ràpides són

ωℓ = (8.39549288702546301204·10−2, 3.38240117059304358259·10−2).

La tercera freqüència, lenta, corresponent a la precessió relativa,
s’obté per anàlisi de freqüències [Locatelli, Giorgilli 2007]:

ωĝ1 = −1.85007988077595000000 · 10−5.

Aquestes freqüències són gairebé Diofantines: per ω = (ωℓ, ωĝ1),
γ = 1.69 · 10−6 i τ = 2.4, existeixen ω̃ que satisfan |ω̃ − ω| < 10−80, i per a
qualsevol k ∈ Z3 \ {0}, |k · ω̃| ≥ γ

|k|τ1
.
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Objectius

1 Obtenir una bona aproximació d’una parametrització
K : T3 → T3 × R3 que sigui (numèricament) invariant, que
satisfaci l’equació d’invariància 1

LωK(θ) + XHĜ2
(K(θ)) = 0, (1)

on LωK(θ) = −DK(θ) · ω i XHĜ2
=

(
0 I3
−I3 0

)
(DHĜ2

)⊤.

2 Comprovar que el Hamiltonià i l’aproximació donada del tor
compleix les hipòtesis d’un teorema KAM quantitatiu, amb
format a posteriori. 2.

1També, XHĜn
(K(θ)) = DK(θ)ω.

2Figueras, Haro, A modified parameterization method for invariant lagrangian tori for partially integrable
Hamiltonian systems (2023)
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A la recerca del tor perdut
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A computation is a temptation that should be re-
sisted as long as possible.

– John P. Boyd, Chebyshev and Fourier
Spectral Methods (2000)
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Obstacles

El sistema

HĜ2
(ℓ, ĝ, L, Ĝ) =

2∑
i=1

−m3
i

2L2
i

+ µH1
Ĝ2
(ℓ, ĝ, L, Ĝ),

pateix un inconvenient: per a µ = 0 li manca una acció (Ĝ).
Les implicacions:

per a µ = 0 els tors invariants 3D estan foliats per tors
invariants 2D, la tercera freqüència és 0, i qualsevol Ĝ
funciona.
no podem continuar un tor amb freqüència ω des de µ = 0,
perquè no existeix!
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El mètode de tors traslladats

El mètode consisteix a afegir un contra-terme que permeti
desingularitzar el problema (Herman).
Seguint [González, Haro, de la Llave 2014], introduïm un
paràmetre extra λ, afegint una equació, i resolem{

LωK(θ) + XH0
Ĝn
(K(θ)) + µXH1

Ĝn
(K(θ)) + XĜ(K(θ))λ = 0,

⟨ΠĜ◦K⟩ − Ĝ0 = 0,
(2)

per al parell (K, λ) fent homotopia des de µ = 0 fins a µ = 10−3.
Si escollim correctament Ĝ0, obtenim que per al paràmetre µ = 10−3 la
translació λ és zero. Resolem, doncs,

λ(Ĝ0, µ) = 0.

Obtenim Ĝ0 = 2.17647359010273488684.
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Un pas de Newton per a tors traslladats: plantejament

Donada una solució aproximada (K(θ), λ) de (2), realitzem una
correcció de la forma (P(θ)ξ(θ),∆λ), on P(θ) =

(
DK(θ) N(θ)

)
és aproximadament simplèctica.
S’obté el sistema lineal (en el qual T(θ) és la torsió):

Lωξ
DK(θ) + T(θ)ξN(θ) + bDK(θ)∆λ = ηDK(θ),

Lωξ
N(θ) + bN(θ)∆λ = ηN(θ),

⟨ΠĜ(DK(θ)ξDK(θ) + N(θ)ξN(θ))⟩ = −⟨ΠĜ ◦ K⟩+ Ĝ0,

on (
bDK(θ)
bN(θ)

)
=

(
N(θ)⊤

−DK(θ)⊤
)
ΩXĜ(K(θ)),(

ηDK(θ)
ηN(θ)

)
=

(
−N(θ)⊤

DK(θ)⊤
)
Ω(LωK(θ) + XH(K(θ)) + λXĜ(K(θ))).
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Interludi: l’equació de petits divisors

Sigui ω ∈ Rm prou no-ressonant (condició diofàntica).
Donat η : Tm → Rm prou regular, existeix una única ξ : Tm → Rm

de mitjana zero tal que

Lωξ = η − ⟨η⟩,

on ⟨η⟩ denota la mitjana de η. Escriurem, ξ = Rωη.
En Fourier, si

η(θ) =
∑

k∈Zm

η̂keik·θ

llavors
ξ(θ) =

∑
k∈Zm\{0}

η̂k
−ik · ω

eik·θ.
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Un pas de Newton per a tors traslladats: solució

La mitjana ξN
0 = ⟨ξN⟩ i ∆λ satisfan el sistema lineal

⟨T̂⟩
(
ξN
0

∆λ

)
=

(
⟨η̃DK⟩

−⟨ΠĜ ◦ K⟩+ Ĝ0 − ⟨ΠĜ DKRωη̃
DK⟩

)
,

on T̂ és la supertorsió, que suposem de mitjana regular,

T̂ =

(
T b̃DK

ΠĜ(N − DKRωT) −ΠĜ(DKRωb̃DK + NRωbN)

)
amb b̃DK = bDK − TRωbN i η̃DK = ηDK − TRωη

N. Llavors{
ξN(θ) = ξN

0 +Rωη
N(θ)−RωbN(θ)∆λ,

ξL(θ) = Rωη̃
DK(θ)−RωT(θ)ξN

0 −Rωb̃DK(θ)∆λ,

d’on obtenim la nova aproximació (K + Pξ, λ+∆λ).
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Inici de la continuació

En particular, per a µ = 0, el tor traslladat és

KĜ0
(θℓ, θĝ) = (θℓ, θĝ, L0, Ĝ0) (3)

on les components de L0 són determinades per la tercera llei de
Kepler, i λ és igual a la freqüència secular ωĝ.
A més, la seva torsió i supertorsió són:

⟨T⟩ =
(

D2H0(L0) O
O O

)
, ⟨T̂⟩ =

D2H0(L0) O O
O O I
O I O

 ,

respectivament.
Així, tot i que la torsió és degenerada, la supertorsió no ho és, i això
permet començar la continuació de tors traslladats des de µ = 0.
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Un pas de Newton per a tors invariants

Aleshores, donada una solució aproximada K de (1), la seva
correcció ve donada per P(θ)ξ(θ), on ξ(θ) satisfà el sistema lineal{

Lωξ
DK(θ) + T(θ)ξN(θ) = ηDK(θ),

Lωξ
N(θ) + = ηN(θ),

on
(
ηDK(θ)
ηN(θ)

)
=

(
−N(θ)⊤

DK(θ)⊤
)
Ω(LωK(θ) + XH(K(θ)).

Suposant que la torsió ⟨T⟩ és no degenerada, el sistema es pot
resoldre: 

ξN
0 = ⟨T(θ)⟩−1⟨ηDK(θ)− T(θ)Rωη

N(θ)⟩,
ξN(θ) = ξN

0 +Rωη
N(θ),

ξDK(θ) = Rω

(
ηDK(θ)− T(θ)ξN(θ)

)
.
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Projeccions del tor en coordenades de Delaunay

Figura: Projeccions del tor invariant 3D en coordenades de Delaunay sobre les
parelles (ℓ1, L1), (ℓ2, L2) i (ĝ, Ĝ), i retrat de fase del Hamiltonià secular.
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Projeccions del tor en coordenades cartesianes

Figura: Projeccions del tor invariant 3D en coordenades cartesianes sobre
posicions x1 = (x1,1, x1,2), x2 = (x2,1, x2,2) i moments y1 = (y1,1, y1,2),
y2 = (y2,1, y2,2) de Júpiter (taronja) i Saturn (gris), respectivament.
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Coeficients de Fourier i bandes d’analiticitat
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Kℓ1 + iKL1 Kℓ2 + iKL2 Kĝ1 + iKĜ1

ρℓ1 0.524453 0.521794 0.522239
ρℓ2 0.416514 0.417078 0.417001
ρĝ1 0.525773 0.316526 0.316557

Ajustos dels coeficients de Fourier de les components (complexificades)
de la parametrització, i estimacions de bandes d’analiticitat per angles.
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Aplicant el teorema KAM
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Hipòtesis del teorema KAM
Sigui K : T̄m

ρ → Tm
C × Cm una aplicació contínua, real-analítica a Tm

ρ ,
amb derivades contínues a T̄m

ρ , amb K(θ)− (θ, 0) 2π-periòdica.
Sigui h : U → C un Hamiltonià real-analític, definit en

U = {(θ, I) ∈ Tm
C × Cm | ∃θ0 ∈ T̄m

ρ , |(θ, I)− K(θ0)| < R}.

Sigui ω un vector diofàntic amb constants γ > 0 i τ ≥ m − 1.
També assumim:
H1 Existeixen constants cXh , cDXh , c(DXh)

⊤ , cD2Xh
tals que

|Xh|U ≤ cXh , |DXh|U ≤ cDXh , |(DXh)
⊤|U ≤ c(DXh)

⊤ , |D2Xh|U ≤ cD2Xh
.

H2 Hi ha nombres de condició σDK, σ(DK)⊤ , σB, i σ⟨T⟩-1 tals que

|DK|ρ < σDK, |(DK)⊤|ρ < σ(DK)⊤ , |B|ρ < σB, |⟨T⟩-1| < σ⟨T⟩-1 ,

on

B = (DK⊤DK)−1,N = J DK B,T = N⊤Ω(DXh◦K + JDXh◦K J)N
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Tesis del teorema KAM
Per a cada δ ∈]0, ρ/6[, existeixen constants C,C∆K que depenen de ρ, δ i
de les constants i objectes anteriors, tals que, si

C

γδτ+1
max

{
|ηDK|ρ,

1

γδτ
|ηN|ρ

}
< 1, (4)

on

ηDK = −N⊤Ω (LωK + Xh◦K), ηN = (DK)⊤Ω (LωK + Xh◦K),

aleshores, per a ρ∞ = ρ− 6δ, existeix K∞ : T̄m
ρ∞

→ Tm
C × Cm contínua,

real-analítica a Tm
ρ∞

, amb derivades contínues a T̄m
ρ∞

, amb K∞(θ)− (θ, 0)
2π-periòdica, que és invariant sota Xh, amb freqüència ω, de manera que

LωK∞ + Xh◦K∞ = 0.

A més, K∞ satisfà la hipòtesi H2, a Tm
ρ∞

, i és a prop de K:

|K∞ − K|ρ∞ ≤ C∆K
γδτ

max
{
|ηDK|ρ,

1

γδτ
|ηN|ρ

}
. (5)

[Villanueva 17],[Figueras, Haro 23]
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Com utilitzar el Teorema
Comencem amb una aproximació a la nostra solució, a partir de la
qual, ajustant ρ, obtenim les constants d’entrada:

Fites superiors en un entorn (complex) de l’aproximació del
camp vectorial i les seves derivades;
Fites superiors de les derivades de la parametrització del tor i
de la inversa de la seva mètrica;
Fites superiors de la torsió de la parametrització i de la inversa
de la seva mitjana;
Fites superiors dels errors d’invariància.

Aleshores, combinem el Teorema i un Lema Iteratiu.
En el nostre problema: obtenim que perquè el teorema garanteixi
l’existència del tor, aquest necessita tenir un error d’invariància
més petit que 10−47.

Hem obtingut un error 10−54!!!.
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Input Consts

Check Theorem hypotheses

YES

Iterative Step

NO

Refined Consts
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Obstacles durant la computació

Hem patit bastants obstacles, teòrics i computacionals.
En l’última etapa, vam requerir un ordinador amb 256 GB de RAM
i 2 TB de memòria de disc, i escriure la codificació per a tenir
només una funció periòdica (ja sigui en la seva representació en el
domini espacial o freqüencial) a la memòria RAM, paral·lelització
amb 8 nuclis, adaptant els algorismes per a la FFT, etc. Un pas del
mètode de Newton triga al voltant de 6 dies.
També hem utilitzat Uppmax, el superordinador d’Uppsala, que té
16 nuclis per node. Un pas del mètode de Newton triga al voltant
de 10 dies.
Al nou superordinador de la Facultat de Matemàtiques i
Informàtica de la UB, un pas triga menys d’un dia i mig!
Falta completar la computer assisted proof.
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The standard of correctness and completeness ne-
cessary to get a computer program to work at all is a
couple of orders of magnitude higher than the mathe-
matical community’s standard of valid proofs.

– William P. Thurston, On proof and progress
in Mathematics (1994)
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Observacions finals
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Investigació present i futura

El MP i la seva formulació a posteriori permeten derivar
algoritmes de càlcul molt eficients, i els seus resultats es
poden validar amb els teoremes corresponents.

En el context del problema planetari, a part del problema
d’1+2 cossos (Sol-Júpiter-Saturn), ens agradaria estudiar
també d’altres. Hi ha molts sistemes planetaris allà fora...
molts d’ells no són plans.

Motivats per problemes de mecànica celeste i astrodinàmica,
estem desenvolupant aquestes tècniques, amb aplicacions
potencials també en altres àmbits, tot col·laborant amb
Josep Maria Mondelo, Álvaro Fernández-Mora, Miquel
Barcelona, Renato Calleja, Pedro Porras, Jordi-Lluís
Figueras, Chiara Caracciollo ...
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Filosofia

Problemes

Teoremes

Algorismes

Implementacions

Conjectures

Aplicacions
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Fons d’inspiració

La nostra motivació i inspiració sorgeix de manera natural dins del
si dels Sistemes Dinàmics a Catalunya:

la mecànica celeste i l’astrodinàmica són uns dels motors de la
recerca des dels seus orígens, amb en Carles Simó;

al desenvolupament de la metodologia del mètode de la
parametrització han participat també molts investigadors,
amb en Rafael de la Llave com a nexe comú.
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Gràcies!
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