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Breathers and the Klein-Gordon equation

Klein-Gordon equation
Ut = Uy — U+ g(u), g(0) = g'(0) =0, x €R

Breathers: Periodic in t localized in x solutions u(x, t).
The linearized Klein-Gordon equation

Uit = Uxx — U, x €R

has linear decay as t — o0

The existence of Breathers shows a big non-linear effect: Breathers
are an ‘obstacle” to non-linear decay

Breathers for the Sine-Gordon equation v = Uy — Sin u:

m sin(wt)

u(x,t):4arctan< ), m,w >0, m*+w?=1.

w cosh(mx)

They are 2” -periodic in time and limy_ o u(x, t) = 0.

What about other nonlinearities?

Families of breathers should be unlikely to happen:
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Spatial dynamics: Breathers as homoclinic orbits

Ute = Uxx — U+ g(u), g(u) = O(v?)

@ Dynamical system with x as time: phase space is space of 27 /w-
periodic functions in t for some w > 0.

@ Breathers = Homoclinic orbits to the steady state u = 0 in an infinite
dimensional phase space.

@ u = 0 has finite dimensional stable and unstable eigenspaces: the
stable/unstable invariant manifolds unlikely will intersect.

@ But this is hard to prove in general...

@ Breathers do exist for Hamiltonian systems on lattices (McKay,
Aubry,...).
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Non-existence of breathers for the Klein Gordon eq.

Global results:

o Kowalczyk, Martel and Muiioz (2016): Nonexistence of odd (in x)
breathers for any odd g.

@ The breathers of the Sine-Gordon equation are even in x!

Perturbative results:

@ Birnir-McKean—Weinstein and Denzler (1990's): Perturbed
Sine-Gordon equation

Ut = Uxx —Sinu+eA(u), <1, A analytic

@ Persistence of the family of breathers implies A(u) is a trivial
perturbation.
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.
Small amplitude breathers for the odd Klein Gordon eq.

@ What about (families of ) small amplitude breathers?
@ Equivalent to small homoclinic loops to u = 0.

@ Simplest setting: Odd Klein-Gordon equation

Py — 02+ u— %Lﬁ _fu) =0 f(u) = O(u5), odd

o Soffer—Weinstein (1999) and Bambusi—Cuccagna (2011):
Non-existence of breathers if one adds a potential (under some
hypotheses).
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.
Kruskal and Segur

o Kruskal-Segur (1987): Formal arguments for the ¢* model to indicate
the breakdown of breathers with

frequency w :0<1—w <1l and amplitude ~ /1 — w2

@ Questions:

1 How to make rigorous the formal arguments to prove the breakdown of
breathers and extend the proof to all possible w's.

2 Do small amplitude breathers with exponentially small (with respect to
the amplitude) tails exist? < Generalized breathers
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.
Small amplitude breathers for the odd Klein Gordon eq.

@ Goal: For a “typical” analytic odd f, small amplitude breathers do
not exist.

@ But we need to impose certain restrictions...

o Let o € (0,1) and w > 0. A Z=_periodic-in-t function u(x, t) is

w
o-multi-bump in x if there exist x3 < xo < x3 < x4 < x5 such that

lu(xj, e < ollulxi,)lla,  Vi€{1,3,5}, i€ {24}
Otherwise, it is said to be o-single-bump.

o A

Multi-bump Single-bump
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Main result: Non-existence of breathers

1

O?u — 0%u + u — 3u?’—f( u) =0, f(u)=O(v’), odd, analytic

Theorem (Guardia-Gomide-S.-Zeng)

There exists ©f € C, depending analytically on f, such that if ©f # 0:
For any o € (0,1), there exists p* > 0 such that there does not exist any
so/ution u(x, t) which:

Q is T —--periodic in t for some w > 0,

Q sa t/sf/es

160 M (2 z,2y) TN (5 5y 700 a5 X = 400,

© satisfies sup,cp ||u(x, )< min{l,p*w%},

Q is o-single-bump.
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Some remarks

@ O depends analytically on f — For “typical” f, ©f # 0.

@ So, for typical f, small amplitude breathers do not exist provided:

e We restrict to single-bump breathers,

e We admit the smallness to depend on w:

sup [|u(x,)la < min{1, p*w?}.
XER

@ With some extra work we should be able to prove that multi-bump
breathers should not exist either.

@ One should be able to rule out breathers such that

sup [lu(x,)|ln < p*.
x€eER
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Generalized breathers

@ Nan Lu (2014): There exist breathers with exponentially small tails
for some periods.

e Fix the frequency w = V1 -2 with 0 < e < 1.

@ There exist solutions u such that are 27 /v/1 — &2 — periodic in time
and

< sup |ju(x, °)HH}(—1,£) < 2¢

N[ ™

and

Iimsup{Hu(X,-)H 1 T T —|_H8XU(X7)H 2 T T },S e_C/€7 C>O
H((-=,m)) 2((-x,m))

X—T+00

@ Groves and Schneider (2000's): “modulated pulse” solutions with
small (beyond all orders) tails for the nonlinear Klein Gordon
equations (and quasilinear wave equations).
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Main results: Generalized breathers

Theorem (Guardia-Gomide-S.-Zeng)
Fix the frequency w = v1 — 2 with0 < e < 1.

@ There exist 27 /w -periodic-in-t solutions u such that

—SSUP u(x, oy <2 and
S < sup 00, )
. 27
im sup ([luCx, )l (e 2+ 19x0x Vg (s o))< Me
|X|—>OO w’w w’w
@ If ©f # 0, they also satisfy
Var
lim inf ( u(x, - .\ + |[Oxu(x, - o )2 M~ tem "5
nf (g (oo 195 e ) )
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Some ideas about the proof

@ The proofs of all the results rely on spatial dynamics techniques (x as
evolution variable). Breathers are homoclinic orbits to u = 0.

@ For the breackdown of breathers: We need to analyze the

stable/unstable invariant manifolds associated to the steady state
u=Q0.

@ For the generalized breathers: center-stable and center-unstable
invariant manifolds.

@ In this talk, we focus on the proof of the breakdown of breathers.

@ Small breathers correspond to small homoclinics and these appear at
bifurcations!

@ We need to deal with exponentially small phenomena.
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Breather breakdown from spatial dynamics point of view

@ Choose any frequency w > 0 and fix periodicity in t to be 27 /w.

@ Change time to 7 = wt, and consider u(7, x) 27 periodic in 7
satisfying:

1
W20rrtl — Ol + U — §u3 —f(u) =0, f(u)=0O(v’),odd, analytic

which is a (Hamiltonian) equation depending on a parameter w.

@ Linearization around v = 0: w?0, 0 — Ot +u=0
e Eigenvalues: +v/1 — n2w?, n > 1.

@ The number of hyperbolic eigenvalues is always finite and increases
when w — 0.
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Breather breakdown from spatial dynamics point of view

e Eigenvalues: +v/1 — n?w?, n> 1.

@ Bifurcations: At w = % k € N, a new pair of (weakly) hyperbolic
eigenvalues appears. small homoclinic orbits can appear!

@ Two settings:

e Close to bifurcation: 0 < % —w<Kl keN.

e Far from bifurcation: Otherwise.
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Far from bifurcation:

@ Far from bifurcation: All hyperbolic eigenvalues are “strong’.

@ All orbits in the stable/unstable invariant manifolds of u = 0 escape
“far away” from u = 0.

@ If homoclinic loops exist, they must be large.

@ Small homoclinic loops may only appear when w is close to
bifurcation (0 < ¢ —w < 1).
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Close to the first bifurcation

@ Kruskal-Segur setting: Close to the first bifurcation i.e.

O0<1l—-—w<xl.

@ Key setting: Close to the first bifurcation in the odd in t setting:

u(x,7) = Z un(x)sin(nT).

n>1

@ For the first bifurcation: take

w=111—¢2 with 0 <exl.

@ The other cases w ~ % can be proven using the results for this setting.

16 / 29




First bifurcation in the odd in 7 setting

1
W2 O0rrtl — Ol + U — §u3 — f(u) =0, f(u)=0O(u’), odd analytic

@ Ww2=1_—¢2

o Eigenvalues: \;" = ¢ and \} = +/\/n2(1 —£2) -1, n > 2.

@ Spatial dynamics (x as evolution variable): one dimensional (weak)
stable and unstable invariant manifolds of u = 0.

o Weakness AT — 0 The invariant manifolds have “size” O().

—> 2° J‘*Z‘:P.("é' /ryoa[C/)
‘ (/
(
Su(s )
@ Scaling: u="ev, and "time" y = ex
2
5 W< 1 1 5 1 B
(%,V—;@Tv—g—zv—kgv —|—8—3f(€V)—O,
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Equation for the Fourier coefficients (odd setting)

Writing the equations of the Fourier coefficients: v(y,7) = > vp(y)sin nr,
we obtain a singularly perturbed problem:

/

\

V3
\./.1 = Vi — |_|1 [? + 0(82)] ,
V3
2V, = —,u%vn — &M, [? + (’)(52)] , n> 2,

with - = d/dy and p, = 1/n?(1 — &2) — 1,

v = 0 is a saddle center point with infinitely many elliptic directions.
e Taking the singular limit € — 0, the critical manifold is the plane

M={v,=0, v,=0, n>1}.

which is normally elliptic: normal eigenvalues ii% — fast oscillations!
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A normally elliptic slow manifold

M={v,=0, v, =0, n>1}.

3
The dynamics in M is given by the Duffing equation: v; = vy — ‘%
e Limit equation has a homoclinic orbit to v{ = v; = 0.
2v/2
h h
— =0 > 2.
i (.y7 T) COSh(y)7 Vi y N =
e In the limit problem, the invariant manifolds W*(0) and W"(0) coincide.
AN RV
) /1/:/
. - Vin =0
. gl »
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e = 0: Homoclinic breakdown

@ Does the homoclinic orbit persist for the full problem?

@ It is a singular perturbation problem:

Fast rotation versus _
.. — Exponentially small phenomena.
weak hyperbolicity

@ Hard to measure the distance between the one dimensional perturbed
invariant manifolds W*?(0) and W*(0).

@ Classical perturbative methods (Melnikov Theory) cannot be applied.
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e > 0: Formal series expansions

@ Look for parameterizations of W"(0) and W*(0)
y,2), vi(y,e), n> 1
satisfying:

lim v/ (y,e) =0, lim v (y,e)=0

y——0o y——+00
@ Look for formal solutions as formal power series of &:
vi(y,€) = vo(y) + eviaa(y) + €2via(y) + - for x = s,u

® One can check:
Vo k(Y) = vy k(y) Yk €N

@ Thus: their difference is beyond all orders:

v (¥,€) = vply,€) = O(e™) Vm e N.
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Kruskal and Segur work

We have two possibilities:

© The power series in € are convergent and the manifolds coincide. In
this case breathers exist!

© The power series in ¢ are divergent and the difference between
manifolds is flat with respect to ¢.

@ Typically, we expect the second case to happen.

@ H. Segur, M.D. Kruskal. (1987) gave formal arguments which
indicate that the series is not convergent and that there is breakdown.

@ Question:

How to make rigorous the formal arguments to show breathers
breakdown.
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Main result
A N

Take a section transversal to the solutions

Y ={(v,0yv); H(v,0,v)=0 and Tli[0,v] =0}

Theorem (G.-Gomide-Seara-Zeng)

Puns:st the first intersection points of WUt wijth 3. There exists a constant ©¢
such that, for e < 1, the distance d(g) = P"" — P°' satisfies

N

7T

Or+ O(1/loge)) My[d(e)] = ge_ 62(9(1/Iog€) n> 3.

Mafd(2)] = 2= (
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E
Implication on breathers (if ©¢ £ 0)

@ The constant ©f is the one appearing in the main theorems.

o If ©f # 0, then the invariant manifolds W~(0) and W*(0) do not
intersect the first time they reach 2.

@ It rules out the existence of homoclinics continuation of those of the
singular limit problem (single-bump homoclinic loops).

@ Even if ©f #£ 0, W—(0), WT(0) may still coincide after more rounds.
This would give multi-bump breathers.

vl

This analysis is the starting point to deal with all bifurcations.
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Some ideas about the proof of the first bifurcation theorem

@ Exponentially small splitting of separatrices.

@ We follow the ideas by Lazutkin for the homoclinic breakdown for the
Standard Map (also Kruskal and Segur).

@ Mostly been applied to:

e 2- dimensional area preserving maps

e Invariant manifolds of periodic orbits or invariant tori at resonances of
nearly integrable Hamiltonian systems (Arnold diffusion)

o Local bifurcations for Hamiltonian /Reversible /Volume preserving
systems
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Analytic continuation to complex domains

2v/2

@ Homoclinic for the singular limit: vy(y,7) = sin T.
cosh(y)

uns

@ Look for stable/unstable solutions v""™ and vt of Klein-Gordon eq.

uns

@ v'U"S vt are exponentially close to each other.

@ It is very difficult to study the difference.

@ vj has singularities at y = +im /2, therefore it blows up.
o Extend v'", vt to complex y up to y ~ +in/2.
@ vj, blows up at y = +in/2 — v“" vst should be large for y ~ +im/2

o Its difference is easier to measure at y ~ +im/2.
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Analytic continuation to complex domains

@ Lazutkin and Kruskal & Segur: Analyze the difference between v'"®
and vt when y F in/2 ~ €.

@ When y Fim/2 ~ g, v'", v are not well approximated by the
unperturbed homoclinic vy.

o Singular change: z = ¢} (y — /g) and ¢(z,7) = ev (/g + ez, 7').

@ Let ¢ — 0 and we get a new equation for the first order: the inner
equation

26— o~ b+ 36+ F(9) = 0
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Analytic continuation to complex domains

@ The analysis of suitable solutions of the inner equation and their
difference provides the constant ©f appearing in the distance formula.

@ Of is a Stokes constant (Borel Resummation, Resurgence Theory).

@ Of depends on the full jet of the nonlinearity f.

@ Only one condition ©¢ # 0 rules out breathers of any frequency!
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Thank you for your attention
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