FUNCIONES ENTERAS CON DOMINIOS ERRANTES

Leticia Pardo Simón

(en colaboración con V. Evdoridou, A. Glücksam y D. Sixsmith)

Universitat de Barcelona

7a Jornada de Sistemes Dinàmics a Catalunya Institut d'Estudis Catalans, octubre 2024

FATOU AND JULIA SETS

Fatou set: set of stability.

 $F(f) = \{z \in \mathbb{C} : \{f^n\}_{n \in \mathbb{N}} \text{ is a normal family in a neighbourhood of } z\}.$

small perturbations ~> small perturbations.

Fatou set: set of stability.

 $F(f) = \{z \in \mathbb{C} : \{f^n\}_{n \in \mathbb{N}} \text{ is a normal family in a neighbourhood of } z\}.$

small perturbations \rightsquigarrow small perturbations.

*** Fatou component**: connected component of *F*(*f*).

Fatou set: set of stability.

 $F(f) = \{z \in \mathbb{C} : \{f^n\}_{n \in \mathbb{N}} \text{ is a normal family in a neighbourhood of } z\}.$

small perturbations ~> small perturbations.

***** Fatou component: connected component of *F*(*f*).

"maximal domain of stability".

Fatou set: set of stability.

 $F(f) = \{z \in \mathbb{C} : \{f^n\}_{n \in \mathbb{N}} \text{ is a normal family in a neighbourhood of } z\}.$

small perturbations \rightsquigarrow small perturbations.

***** Fatou component: connected component of *F*(*f*).

"maximal domain of stability".

▶ Julia set: locus of chaotic behaviour. $J(f) = \mathbb{C} \setminus F(f)$.

A wandering domain is a Fatou component U such that $f^n(U) \cap f^m(U) = \emptyset$ for all $m \neq n$.

* Sullivan (1985): Rational maps <u>do not</u> have wandering domains.

- * Sullivan (1985): Rational maps <u>do not</u> have wandering domains.
- ★ But transcendental entire maps do.

- * Sullivan (1985): Rational maps <u>do not</u> have wandering domains.
- ★ But transcendental entire maps do.
 - Baker (1976) provided the first example.

- * Sullivan (1985): Rational maps <u>do not</u> have wandering domains.
- ★ But transcendental entire maps do.
 - Baker (1976) provided the first example.
 - Many others have been found since then.

 $f(z)=z+\sin(z)+2\pi.$

*Figure by L. Rempe. Wikipedia commons

EXAMPLES

 $f(z) = z - 1 + e^{-z} + 2\pi i.$

*Picture from [Rempe-Sixsmith, 17']

▶ Non-wandering Fatou components are fairly well-understood.

- ▶ Non-wandering Fatou components are fairly well-understood.
- These are (pre)-periodic, that is, $f^n(U) = U$ for some $n \ge 1$.

- ▶ Non-wandering Fatou components are fairly well-understood.
- These are (pre)-periodic, that is, $f^n(U) = U$ for some $n \ge 1$.

Theorem (Fatou, 1919)

Let U be a periodic Fatou component of f (period 1). Then, U is either

- ▶ Non-wandering Fatou components are fairly well-understood.
- These are (pre)-periodic, that is, $f^n(U) = U$ for some $n \ge 1$.

Theorem (Fatou, 1919)

Let U be a periodic Fatou component of f (period 1). Then, U is either

attracting basin $f^{t_i}(z) \rightarrow p \in U, |f'(p)| < 1.$

Siegel disc $f|_U$ conjugate to $e^{i\vartheta}z$, $\vartheta \in \mathbb{R} \setminus \mathbb{Q}$.

parabolic basin $f^{t}(z) \rightarrow p \in \partial U, f'(p) = 1.$

On the contrary, wandering domains can be quite elusive....

On the contrary, wandering domains can be quite elusive....

► How do they look?

WANDERING DOMAINS

On the contrary, wandering domains can be quite elusive....

► How do they look?

*Figures from [Rempe-Sixsmith '17], [Bishop '18], [Martí-Pete, Rempe,Waterman, '22]

WANDERING DOMAINS

On the contrary, wandering domains can be quite elusive....

► How do they look?

- ► Where do they go?
 - Can they stay away from infinity?

*Figures from [Rempe-Sixsmith '17], [Bishop '18], [Martí-Pete, Rempe,Waterman, '22]

WANDERING DOMAINS

On the contrary, wandering domains can be quite elusive....

► How do they look?

- ► Where do they go?
 - Can they stay away from infinity?
- ► For which functions do they occur?
 - Relation with singular values.

*Figures from [Rempe-Sixsmith '17], [Bishop '18], [Martí-Pete, Rempe,Waterman, '22]

WHERE DO THEY GO?

A wandering domain *U* is of one of the following three types:

WHERE DO THEY GO?

A wandering domain U is of one of the following three types:

• Escaping: $f^n(z) \to \infty$ as $n \to \infty$ for all $z \in U$.

▶ Oscillating: there are subsequences $f^{n_k}(z) \to \infty$ and $f^{m_k}(z) \not\to \infty$ for all $z \in U$.

- ▶ **Bounded-orbit**: $f^{n_k}(z) \not\rightarrow \infty$ for all $z \in U$ and all subseq. (n_k) .
 - Do they exist?
 - <u>Stronger version</u>: is there U such that $f^n(U) \subset D$ for all n and some bounded domain D?

► Infinite products. [Baker, Sixsmith...]

- ► Infinite products. [Baker, Sixsmith...]
- ► As lifts under exponential maps of invariant Fatou components of maps of self maps of C \ {0}. [Herman, Fagella, Henriksen...]

- ► Infinite products. [Baker, Sixsmith...]
- ► As lifts under exponential maps of invariant Fatou components of maps of self maps of C \ {0}. [Herman, Fagella, Henriksen...]
- Using quasiregular/quasiconformal maps [Bishop, Shishikura, Martí-Pete, Lazebnik...].

- ► Infinite products. [Baker, Sixsmith...]
- ► As lifts under exponential maps of invariant Fatou components of maps of self maps of C \ {0}. [Herman, Fagella, Henriksen...]
- Using quasiregular/quasiconformal maps [Bishop, Shishikura, Martí-Pete, Lazebnik...].
- Using approximation theory:

- ► Infinite products. [Baker, Sixsmith...]
- ► As lifts under exponential maps of invariant Fatou components of maps of self maps of C \ {0}. [Herman, Fagella, Henriksen...]
- Using quasiregular/quasiconformal maps [Bishop, Shishikura, Martí-Pete, Lazebnik...].
- Using approximation theory:
 - First example of oscillating wandering domain. [Eremenko-Lyubich '87].

- ► Infinite products. [Baker, Sixsmith...]
- ► As lifts under exponential maps of invariant Fatou components of maps of self maps of C \ {0}. [Herman, Fagella, Henriksen...]
- Using quasiregular/quasiconformal maps [Bishop, Shishikura, Martí-Pete, Lazebnik...].
- Using approximation theory:
 - First example of oscillating wandering domain. [Eremenko-Lyubich '87].
 - Classification of **internal dynamics**.

[Benini-Evdoridou-Fagella-Rippon-Stallard '22].

- ► Infinite products. [Baker, Sixsmith...]
- ► As lifts under exponential maps of invariant Fatou components of maps of self maps of C \ {0}. [Herman, Fagella, Henriksen...]
- Using quasiregular/quasiconformal maps [Bishop, Shishikura, Martí-Pete, Lazebnik...].
- Using approximation theory:
 - First example of oscillating wandering domain. [Eremenko-Lyubich '87].
 - Classification of internal dynamics. [Benini-Evdoridou-Fagella-Rippon-Stallard '22].
 - Prescription of the shape of wandering domains [Boc Thaler '21].

- ► Infinite products. [Baker, Sixsmith...]
- ► As lifts under exponential maps of invariant Fatou components of maps of self maps of C \ {0}. [Herman, Fagella, Henriksen...]
- Using quasiregular/quasiconformal maps [Bishop, Shishikura, Martí-Pete, Lazebnik...].
- Using approximation theory:
 - First example of oscillating wandering domain. [Eremenko-Lyubich '87].
 - Classification of internal dynamics. [Benini-Evdoridou-Fagella-Rippon-Stallard '22].
 - Prescription of the shape of wandering domains [Boc Thaler '21].
 - Lakes of Wada example. [MartíPete-Rempe-Waterman '22].

Theorem A (P.-Sixsmith, '23)

There exists an entire function *f* with a wandering domain *U* and a bounded domain *D* such that

$$\lim_{k\to\infty}\frac{\#\{n\leq k:f^n(U)\subset D\}}{k}=1.$$

Theorem A (P.-Sixsmith, '23)

There exists an entire function *f* with a wandering domain *U* and a bounded domain *D* such that

$$\lim_{k\to\infty}\frac{\#\{n\leq k:f^n(U)\subset D\}}{k}=1.$$

► We can *prescribe* any regular domain *U* whose closure in ℂ is a full compact set (following Boc Thaler's idea).
Theorem A (P.-Sixsmith, '23)

There exists an entire function *f* with a wandering domain *U* and a bounded domain *D* such that

$$\lim_{k\to\infty}\frac{\#\{n\leq k:f^n(U)\subset D\}}{k}=1.$$

- ► We can prescribe any regular domain U whose closure in C is a full compact set (following Boc Thaler's idea).
- Let (n_j)_{j∈N}, (m_j)_{j∈N} be sequences of natural numbers. We can prescribe the iterates U spends on D:

For each $n \in \mathbb{N}$, $f^n(U) \subset D$ if and only if

$$\sum_{i=0}^{p} (n_i + m_i) < n \le \sum_{i=0}^{p} (n_i + m_i) + n_{p+1} \text{ for some } p \ge 0.$$

Let A be a full compact set. Let $h: A \to \mathbb{C}$ be a holomorphic function. Then for every $\varepsilon > 0$, there exists a polynomial f such that

$$|f(z) - h(z)| < \varepsilon$$
, for $z \in A$.

Let A be a full compact set. Let $h: A \to \mathbb{C}$ be a holomorphic function. Then for every $\varepsilon > 0$, there exists a polynomial f such that

$$|f(z) - h(z)| < \varepsilon$$
, for $z \in A$.

Variations:

► The map *h* can be replaced by a collection $h_k: A_k \to \mathbb{C}$ of maps, with A_k pairwise disjoint, as long as

Let A be a full compact set. Let $h: A \to \mathbb{C}$ be a holomorphic function. Then for every $\varepsilon > 0$, there exists a polynomial f such that

$$|f(z) - h(z)| < \varepsilon$$
, for $z \in A$.

Variations:

- ► The map *h* can be replaced by a collection $h_k: A_k \to \mathbb{C}$ of maps, with A_k pairwise disjoint, as long as
 - There are finitely many elements, or

Let A be a full compact set. Let $h: A \to \mathbb{C}$ be a holomorphic function. Then for every $\varepsilon > 0$, there exists a polynomial f such that

$$|f(z) - h(z)| < \varepsilon$$
, for $z \in A$.

Variations:

- ► The map *h* can be replaced by a collection $h_k: A_k \to \mathbb{C}$ of maps, with A_k pairwise disjoint, as long as
 - There are finitely many elements, or
 - $\min\{|z|: z \in A_n\} \to \infty \text{ as } n \to \infty.$

Let A be a full compact set. Let $h: A \to \mathbb{C}$ be a holomorphic function. Then for every $\varepsilon > 0$, there exists a polynomial f such that

$$|f(z) - h(z)| < \varepsilon$$
, for $z \in A$.

Variations:

- ► The map *h* can be replaced by a collection $h_k: A_k \to \mathbb{C}$ of maps, with A_k pairwise disjoint, as long as
 - There are finitely many elements, or
 - $\min\{|z|: z \in A_n\} \to \infty \text{ as } n \to \infty.$
- Finitely many conditions can be prescribed for each k, that is, $f(z_{i,k}) = h_k(z_{i,k})$ and $f'(z_{i,k}) = h'_k(z_{i,k})$ for finitely many i.

PROOF OF THEOREM A

We iteratively use Runge's theorem on a sequence (f_n) such that f_{n+1} approximates f_n on Δ_n .

	simply connected	multiply connected
bounded		
unbounded		Not possible. [Baker, 84]

Theorem (Rippon and Stallard, '11)

Let f be a transcendental entire function. Given any $a_n \to \infty$, there exists $z \in I(f) \cap J(f)$ and $N \in \mathbb{N}$ such that $|f^n(z)| \le a_n$ for all $n \ge N$.

We are interested in points that escape 'as fast as possible':

We are interested in points that escape 'as fast as possible':

Definition

For a transcendental entire *f*, we define its **fast escaping set** as

 $A(f) := \{z \in \mathbb{C} : \text{ there is } \ell \in \mathbb{N} \text{ such that } |f^{n+\ell}(z)| \ge M^n(R), \text{ for } n \in \mathbb{N}\},\$

We are interested in points that escape 'as fast as possible':

Definition

For a transcendental entire *f*, we define its **fast escaping set** as

 $A(f) := \{z \in \mathbb{C} : \text{there is } \ell \in \mathbb{N} \text{ such that } |f^{n+\ell}(z)| \ge M_f^n(R), \text{ for } n \in \mathbb{N}\},\$

We are interested in points that escape 'as fast as possible':

Definition

For a transcendental entire *f*, we define its **fast escaping set** as

 $A(f) := \{z \in \mathbb{C} : \text{there is } \ell \in \mathbb{N} \text{ such that } |f^{n+\ell}(z)| \ge M_f^n(R), \text{ for } n \in \mathbb{N}\},\$

We are interested in points that escape 'as fast as possible':

Definition

For a transcendental entire *f*, we define its **fast escaping set** as

 $A(f) := \{z \in \mathbb{C} : \text{there is } \ell \in \mathbb{N} \text{ such that } |f^{n+\ell}(z)| \ge M_f^n(R), \text{ for } n \in \mathbb{N}\},\$

We are interested in points that escape 'as fast as possible':

Definition

For a transcendental entire *f*, we define its **fast escaping set** as

 $A(f) := \{z \in \mathbb{C} : \text{there is } \ell \in \mathbb{N} \text{ such that } |f^{n+\ell}(z)| \ge M_f^n(R), \text{ for } n \in \mathbb{N}\},\$

We are interested in points that escape 'as fast as possible':

Definition

For a transcendental entire *f*, we define its **fast escaping set** as

 $A(f) := \{z \in \mathbb{C} : \text{there is } \ell \in \mathbb{N} \text{ such that } |f^{n+\ell}(z)| \ge M_f^n(R), \text{ for } n \in \mathbb{N}\},\$

where $M_f(r) := \max_{|z|=r} |f(z)|$ and R > 0 is large enough.

15

We are interested in points that escape 'as fast as possible':

Definition

For a transcendental entire *f*, we define its **fast escaping set** as

 $A(f) := \{z \in \mathbb{C} : \text{there is } \ell \in \mathbb{N} \text{ such that } |f^{n+\ell}(z)| \ge M_f^n(R), \text{ for } n \in \mathbb{N}\},\$

where $M_f(r) := \max_{|z|=r} |f(z)|$ and R > 0 is large enough.

15

We are interested in points that escape 'as fast as possible':

Definition

For a transcendental entire *f*, we define its **fast escaping set** as

 $A(f) := \{z \in \mathbb{C} : \text{there is } \ell \in \mathbb{N} \text{ such that } |f^{n+\ell}(z)| \ge M_f^n(R), \text{ for } n \in \mathbb{N}\},\$

We are interested in points that escape 'as fast as possible':

Definition

For a transcendental entire *f*, we define its **fast escaping set** as

 $A(f) := \{z \in \mathbb{C} : \text{there is } \ell \in \mathbb{N} \text{ such that } |f^{n+\ell}(z)| \ge M_f^n(R), \text{ for } n \in \mathbb{N}\},\$

We are interested in points that escape 'as fast as possible':

Definition

For a transcendental entire *f*, we define its **fast escaping set** as

 $A(f) := \{z \in \mathbb{C} : \text{there is } \ell \in \mathbb{N} \text{ such that } |f^{n+\ell}(z)| \ge M_f^n(R), \text{ for } n \in \mathbb{N}\},\$

We are interested in points that escape 'as fast as possible':

Definition

For a transcendental entire *f*, we define its **fast escaping set** as

 $A(f) := \{z \in \mathbb{C} : \text{there is } \ell \in \mathbb{N} \text{ such that } |f^{n+\ell}(z)| \ge M_f^n(R), \text{ for } n \in \mathbb{N}\},\$

(FAST) ESCAPING FATOU COMPONENTS

What is the relation between A(f) and the Fatou set?

▶ Baker domains are not it A(f). [Bergweiler-Hinkkanen, '99]

(FAST) ESCAPING FATOU COMPONENTS

- ▶ Baker domains are not it A(f). [Bergweiler-Hinkkanen, '99]
- All multiply connected wandering domains are in A(f).
 [Rippon-Stallard, '05]

(FAST) ESCAPING FATOU COMPONENTS

- ▶ Baker domains are not it A(f). [Bergweiler-Hinkkanen, '99]
- All multiply connected wandering domains are in A(f).
 [Rippon-Stallard, '05]
- Examples of **simply connected** fast escaping wandering domains:

- ▶ Baker domains are not it A(f). [Bergweiler-Hinkkanen, '99]
- All multiply connected wandering domains are in A(f).
 [Rippon-Stallard, '05]
- Examples of **simply connected** fast escaping wandering domains:
 - Bergweiler, '11: *f* with both mc and sc. wandering domains (using qc maps).

- ▶ Baker domains are not it A(f). [Bergweiler-Hinkkanen, '99]
- All multiply connected wandering domains are in A(f).
 [Rippon-Stallard, '05]
- Examples of **simply connected** fast escaping wandering domains:
 - Bergweiler, '11: *f* with both mc and sc. wandering domains (using qc maps).
 - Sixsmith, '12': *f* with sc and no mc (infinite product).

- ▶ Baker domains are not it A(f). [Bergweiler-Hinkkanen, '99]
- All multiply connected wandering domains are in A(f).
 [Rippon-Stallard, '05]
- Examples of **simply connected** fast escaping wandering domains:
 - Bergweiler, '11: *f* with both mc and sc. wandering domains (using qc maps).
 - Sixsmith, '12': *f* with sc and no mc (infinite product).
- Bergweiler and Sixsmith's examples are bounded.

What is the relation between A(f) and the Fatou set?

- ▶ Baker domains are not it A(f). [Bergweiler-Hinkkanen, '99]
- All multiply connected wandering domains are in A(f).
 [Rippon-Stallard, '05]
- Examples of **simply connected** fast escaping wandering domains:
 - Bergweiler, '11: *f* with both mc and sc. wandering domains (using qc maps).
 - Sixsmith, '12': *f* with sc and no mc (infinite product).
- Bergweiler and Sixsmith's examples are bounded.

Question (Rippon and Stallard, '11)

Can there be any unbounded Fatou components in A(f)?

What is the relation between A(f) and the Fatou set?

- ▶ Baker domains are not it A(f). [Bergweiler-Hinkkanen, '99]
- All multiply connected wandering domains are in A(f).
 [Rippon-Stallard, '05]
- Examples of **simply connected** fast escaping wandering domains:
 - Bergweiler, '11: *f* with both mc and sc. wandering domains (using qc maps).
 - Sixsmith, '12': *f* with sc and no mc (infinite product).
- Bergweiler and Sixsmith's examples are bounded.

Question (Rippon and Stallard, '11)

Can there be any unbounded Fatou components in A(f)?

★ Equivalently: Is there a t.e.f. with an unbounded fast escaping wandering domain?

If
$$f, g$$
 are analytic with $f \circ g = g \circ f$, does $J(f) = J(g)$?

If f, g are analytic with $f \circ g = g \circ f$, does J(f) = J(g)?

► Yes, for rational maps [Fatou, Julia].

If f, g are analytic with $f \circ g = g \circ f$, does J(f) = J(g)?

- Yes, for rational maps [Fatou, Julia].
- ► For transcendental entire maps, the answer is 'yes' if:

If f, g are analytic with $f \circ g = g \circ f$, does J(f) = J(g)?

- ► Yes, for rational maps [Fatou, Julia].
- ► For transcendental entire maps, the answer is 'yes' if:
 - *f*, *g* have no **escaping** Fatou components. [Baker, '62]
Question

If f, g are analytic with $f \circ g = g \circ f$, does J(f) = J(g)?

- ► Yes, for rational maps [Fatou, Julia].
- ► For transcendental entire maps, the answer is 'yes' if:
 - *f*, *g* have no **escaping** Fatou components. [Baker, '62]
 - *f*, *g* have no fast escaping Fatou components. [Bergweiler-Hinkkanen, '99]

Question

If f, g are analytic with $f \circ g = g \circ f$, does J(f) = J(g)?

- Yes, for rational maps [Fatou, Julia].
- ► For transcendental entire maps, the answer is 'yes' if:
 - f, g have no escaping Fatou components. [Baker, '62]
 - *f*, *g* have no **fast escaping** Fatou components. [Bergweiler-Hinkkanen, '99]

Theorem (Benini, Rippon and Stallard, '16)

If $f \circ g = g \circ f$ and f, g have no **simply connected** fast escaping wandering domains, then J(f) = J(g).

Theorem B (Evdoridou-Glücksam-P., '23)

There exists a transcendental entire function with a *fast escaping* unbounded wandering domain.

Theorem B (Evdoridou-Glücksam-P., '23)

There exists a transcendental entire function with a *fast escaping* unbounded wandering domain.

Our function can be chosen to have different types of internal dynamics with respect to the boundary.

Theorem B (Evdoridou-Glücksam-P., '23)

There exists a transcendental entire function with a *fast escaping* unbounded wandering domain.

- Our function can be chosen to have different types of internal dynamics with respect to the boundary.
- Our method provides us with control on the growth, and so on the order, of the function.

$$\rho(f) := \limsup_{r \to \infty} \frac{\log \log M_f(r)}{\log r}.$$

BAKER'S CONJECTURE

Let f be an entire function with order less than $\frac{1}{2}$. Then f has no unbounded Fatou components.

Let f be an entire function with order less than $\frac{1}{2}$. Then f has no unbounded Fatou components.

* Holds for (pre)periodic Fatou components. [Baker, Stallard,...,Zheng].

Let f be an entire function with order less than $\frac{1}{2}$. Then f has no unbounded Fatou components.

- * Holds for (pre)periodic Fatou components. [Baker, Stallard,...,Zheng].
- Real f with only real zeros and ρ(f) < 1 has no unbounded wandering domains. [Nicks-Rippon-Stallard, '18].

Let f be an entire function with order less than $\frac{1}{2}$. Then f has no unbounded Fatou components.

- * Holds for (pre)periodic Fatou components. [Baker, Stallard,...,Zheng].
- κ Real f with only real zeros and ρ(f) < 1 has no unbounded wandering domains. [Nicks-Rippon-Stallard, '18].
- ★ Herman's example is of order 1.

EXAMPLES

 $f(z) = z - 1 + e^{-z} + 2\pi i.$

*Picture from [Rempe-Sixsmith, '17]

Let f be an entire function with order less than $\frac{1}{2}$. Then f has no unbounded Fatou components.

- * Holds for (pre)periodic Fatou components. [Baker, Stallard,...,Zheng].
- Real f with only real zeros and ρ(f) < 1 has no unbounded wandering domains. [Nicks-Rippon-Stallard, '18].
- ★ Herman's example is of order 1.

Let f be an entire function with order less than $\frac{1}{2}$. Then f has no unbounded Fatou components.

- * Holds for (pre)periodic Fatou components. [Baker, Stallard,...,Zheng].
- Real f with only real zeros and ρ(f) < 1 has no unbounded wandering domains. [Nicks-Rippon-Stallard, '18].
- ★ Herman's example is of order 1.

Theorem C

For every $\varepsilon \in (0, 1/2]$, there exists f of order $\rho(f) = \frac{1}{2} + \varepsilon$ with an unbounded fast escaping wandering domain.

IDEA OF PROOFS OF THEOREMS B AND C

Theorem A

There exists an entire function with an orbit of unbounded fast escaping wandering domains.

STRATEGY OF PROOFS

We start by *designing* our (wandering) sets:

We will approximate our model map h.

STRATEGY OF PROOFS

Claim: There exists *f* entire such that:

Claim: There exists *f* entire such that:

- *f* approximates well our model map.

Claim: There exists *f* entire such that:

- *f* approximates well our model map.
- For each k, and z such that $\text{Im}(z) < \tau_k$, we have an upper bound on |f(z)|, independent of τ_j for $j \ge k + 1$.

Claim: There exists *f* entire such that:

- *f* approximates well our model map.
- For each k, and z such that $\text{Im}(z) < \tau_k$, we have an upper bound on |f(z)|, independent of τ_j for $j \ge k + 1$.

STRATEGY OF PROOFS

Claim: There exists *f* entire such that:

- *f* approximates well our model map.
- For each k, and z such that $\text{Im}(z) < \tau_k$, we have an upper bound on |f(z)|, independent of τ_j for $j \ge k + 1$.

In particular, $\{\tau_k\}$ can be chosen so that f has fast escaping wandering domains.

HÖRMANDER'S THEOREM

Let $u : \mathbb{C} \to \mathbb{R}$ be a subharmonic function. Then, for every locally integrable function g there is a solution α of the equation $\bar{\partial}\alpha = g$ such that

$$\int_{\mathbb{C}} |\alpha(z)|^2 \frac{e^{-u(z)}}{(1+|z|^2)^2} dm(z) \leq \frac{1}{2} \int_{\mathbb{C}} |g(z)|^2 e^{-u(z)} dm(z),$$

provided that the integral on the right hand side is finite.

Let $u : \mathbb{C} \to \mathbb{R}$ be a subharmonic function. Then, for every locally integrable function g there is a solution α of the equation $\bar{\partial}\alpha = g$ such that

$$\int_{\mathbb{C}} |\alpha(z)|^2 \frac{e^{-u(z)}}{(1+|z|^2)^2} dm(z) \leq \frac{1}{2} \int_{\mathbb{C}} |g(z)|^2 e^{-u(z)} dm(z),$$

provided that the integral on the right hand side is finite.

We define \(\chi: C\) → [0,1] with \(\chi \equiv 1\) in almost all the domain of the holomorphic "model map" h, and zero elsewhere.

Let $u : \mathbb{C} \to \mathbb{R}$ be a subharmonic function. Then, for every locally integrable function g there is a solution α of the equation $\bar{\partial}\alpha = g$ such that

$$\int_{\mathbb{C}} |\alpha(z)|^2 \frac{e^{-u(z)}}{(1+|z|^2)^2} dm(z) \leq \frac{1}{2} \int_{\mathbb{C}} |g(z)|^2 e^{-u(z)} dm(z),$$

provided that the integral on the right hand side is finite.

- We define $\chi : \mathbb{C} \to [0, 1]$ with $\chi \equiv 1$ in almost all the domain of the holomorphic "model map" *h*, and zero elsewhere.
- We apply Hörmander's theorem to $g(z) := \bar{\partial}\chi(z) \cdot h(z)$ and some u to be chosen.

Let $u : \mathbb{C} \to \mathbb{R}$ be a subharmonic function. Then, for every locally integrable function g there is a solution α of the equation $\bar{\partial}\alpha = g$ such that

$$\int_{\mathbb{C}} |\alpha(z)|^2 \frac{e^{-u(z)}}{(1+|z|^2)^2} dm(z) \leq \frac{1}{2} \int_{\mathbb{C}} |g(z)|^2 e^{-u(z)} dm(z),$$

provided that the integral on the right hand side is finite.

- We define $\chi : \mathbb{C} \to [0, 1]$ with $\chi \equiv 1$ in almost all the domain of the holomorphic "model map" *h*, and zero elsewhere.
- We apply Hörmander's theorem to $g(z) := \overline{\partial}\chi(z) \cdot h(z)$ and some u to be chosen.
- The function $f(z) := \chi(z) \cdot h(z) \alpha(z)$ is entire.

STRATEGY OF PROOFS

First, to be able to apply the theorem, *u* must be "big" where *g* is supported.

First, to be able to apply the theorem, *u* must be "big" where *g* is supported.

Moreover, for the right choice, *f* has the desired properties:

First, to be able to apply the theorem, *u* must be "big" where *g* is supported.

Moreover, for the right choice, *f* has the desired properties:

• Good approximation: where *h* is defined, $|f(z) - h(z)| = |\alpha(z)|$.

 $|\alpha(z)| \leq \cdots \leq C \cdot \exp(u(z)/2).$

First, to be able to apply the theorem, *u* must be "big" where *g* is supported.

Moreover, for the right choice, *f* has the desired properties:

• Good approximation: where *h* is defined, $|f(z) - h(z)| = |\alpha(z)|$.

$$|\alpha(z)| \leq \cdots \leq C \cdot \exp(u(z)/2).$$

We want *u* very negative.

First, to be able to apply the theorem, *u* must be "big" where *g* is supported.

Moreover, for the right choice, *f* has the desired properties:

• Good approximation: where *h* is defined, $|f(z) - h(z)| = |\alpha(z)|$.

$$|\alpha(z)| \leq \cdots \leq C \cdot \exp(u(z)/2).$$

We want *u* very negative.

• Growth: everywhere, $|f(z)| \approx C_2 \cdot |h(z)| + C_3 \cdot \exp(u(z))$.

Theorem C

For every $\varepsilon \in (0, 1/2]$, there exists f of order $\rho(f) = \frac{1}{2} + \varepsilon$ with an unbounded fast escaping wandering domain.

Theorem C

For every $\varepsilon \in (0, 1/2]$, there exists f of order $\rho(f) = \frac{1}{2} + \varepsilon$ with an unbounded fast escaping wandering domain.

- ► $f^n(V) \subset B_n$ for all $n \ge 1$.
- ▶ *V* is contained in a (fast escaping) wandering domain.

►
$$u(z) \leq |z|^{1/2+\varepsilon}$$

gràcies per la vostra atenció!