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FATOU AND JULIA SETS

Let f : C → C be an entire map.

▶ Fatou set: set of stability.

F(f) = {z ∈ C : {f n}n∈N is a normal family in a neighbourhood of z} .

small perturbations⇝ small perturbations.

⋆ Fatou component: connected component of F(f).

“maximal domain of stability”.

▶ Julia set: locus of chaotic behaviour. J(f) = C \ F(f).
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WANDERING DOMAINS

Definition
A wandering domain is a Fatou component U such that
fn(U) ∩ fm(U) = ∅ for all m ̸= n.

⋆ Sullivan (1985): Rational maps do not have wandering domains.

⋆ But transcendental entire maps do.

• Baker (1976) provided the first example.

• Many others have been found since then.
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EXAMPLES

f(z) = z+ sin(z) + 2π.

*Figure by L. Rempe. Wikipedia commons
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EXAMPLES

f(z) = z− 1+ e−z + 2πi.

*Picture from [Rempe-Sixsmith, 17’]
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(PRE)-PERIODIC FATOU COMPONENTS

▶ Non-wandering Fatou components are fairly well-understood.

▶ These are (pre)-periodic, that is, fn(U) = U for some n ≥ 1.

Theorem (Fatou, 1919)

Let U be a periodic Fatou component of f (period 1). Then, U is either

attracting basin
fk(z) → p ∈ U, |f′(p)| < 1.

Siegel disc
f|U conjugate to eiϑz, ϑ ∈ R \Q.

parabolic basin
fk(z) → p ∈ ∂U, f′(p) = 1.

Baker domain
fk(z) → ∞,∞ essential sing.
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WANDERING DOMAINS

On the contrary, wandering domains can be quite elusive....

▶ How do they look?

▶ Where do they go?

• Can they stay away from infinity?

▶ For which functions do they occur?

• Relation with singular values.

*Figures from [Rempe-Sixsmith ’17], [Bishop ’18], [Martí-Pete, Rempe,Waterman, ’22]
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WHERE DO THEY GO?

A wandering domain U is of one of the following three types:

▶ Escaping: fn(z) → ∞ as n → ∞ for all z ∈ U.

▶ Oscillating: there are subsequences fnk(z) → ∞ and fmk(z) ̸→ ∞
for all z ∈ U.

▶ Bounded-orbit: fnk(z) ̸→ ∞ for all z ∈ U and all subseq. (nk).

• Do they exist?
• Stronger version: is there U such that fn(U) ⊂ D for all n and some

bounded domain D?
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HOW DO WE FIND WANDERING DOMAINS?

Examples of entire maps with wandering domains have been
produced via...

▶ Infinite products. [Baker, Sixsmith...]

▶ As lifts under exponential maps of invariant Fatou components of
maps of self maps of C \ {0}. [Herman, Fagella, Henriksen...]

▶ Using quasiregular/quasiconformal maps [Bishop, Shishikura,
Martí-Pete, Lazebnik...].

▶ Using approximation theory:

• First example of oscillating wandering domain. [Eremenko-Lyubich ’87].
• Classification of internal dynamics.

[Benini-Evdoridou-Fagella-Rippon-Stallard ’22].

• Prescription of the shape of wandering domains [Boc Thaler ’21].
• Lakes of Wada example. [MartíPete-Rempe-Waterman ’22].
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FIRST RESULT: NEARLY BOUNDED ORBIT

Theorem A (P.-Sixsmith, ’23)

There exists an entire function f with a wandering domain U and a
bounded domain D such that

lim
k→∞

#{n ≤ k : fn(U) ⊂ D}
k = 1.

▶ We can prescribe any regular domain U whose closure in C is a
full compact set (following Boc Thaler’s idea).

▶ Let (nj)j∈N, (mj)j∈N be sequences of natural numbers. We can
prescribe the iterates U spends on D:

For each n ∈ N, fn(U) ⊂ D if and only if
p∑

i=0

(ni +mi) < n ≤
p∑

i=0

(ni +mi) + np+1 for some p ≥ 0.
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RUNGE’S THEOREM

Runge’s theorem

Let A be a full compact set. Let h : A → C be a holomorphic function.
Then for every ε > 0, there exists a polynomial f such that

|f(z)− h(z)| < ε, for z ∈ A.

Variations:

▶ The map h can be replaced by a collection hk : Ak → C of maps,
with Ak pairwise disjoint, as long as

• There are finitely many elements, or
• min{|z| : z ∈ An} → ∞ as n → ∞.

▶ Finitely many conditions can be prescribed for each k, that is,
f(zi,k) = hk(zi,k) and f′(zi,k) = h′

k(zi,k) for finitely many i.
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PROOF OF THEOREM A

We iteratively use Runge’s theorem on a sequence (fn) such that fn+1
approximates fn on ∆n. 11



TOPOLOGY OF WANDERING DOMAINS

simply connected multiply connected

bounded

unbounded Not possible.
[Baker, 84]
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FAST ESCAPING POINTS

Points may converge to infinity at different rates.

Theorem (Rippon and Stallard, ’11)

Let f be a transcendental entire function. Given any an → ∞, there
exists z ∈ I(f) ∩ J(f) and N ∈ N such that |fn(z)| ≤ an for all n ≥ N.
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We are interested in points that escape ‘as fast as possible’:
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For a transcendental entire f, we define its fast escaping set as

A(f) ..= {z ∈ C : there is ℓ ∈ N such that |fn+ℓ(z)| ≥ Mn(R), for n ∈ N},

where M(r) ..= max|z|=r |f(z)| and R > 0 is large enough.
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ͺ̙ЅЏ ͛Ѕ̙̈́ϵΐκ΀ ϵϊΐκЏЅ

âɄǶȳʚʌ ȭŗ˦ ƉɄȳ˙ƨɼǖƨ ʚɄ Ƕȳ̇ȳǶʚ˦ ŗʚ ƕǶ˽ƨɼƨȳʚ ɼŗʚƨʌࣖ

İƨ ŗɼƨ Ƕȳʚƨɼƨʌʚƨƕ Ƕȳ ɱɄǶȳʚʌ ʚǫŗʚ ƨʌƉŗɱƨ ऑŗʌ Ǒŗʌʚ ŗʌ ɱɄʌʌǶſțƨऒࣘ

6ƨ̇ȳǶʚǶɄȳ
bɄɼ ŗ ʚɼŗȳʌƉƨȳƕƨȳʚŗț ƨȳʚǶɼƨ ǋࣗ ˝ƨ ƕƨ̇ȳƨ Ƕʚʌ Ǒŗʌʚ ƨʌƉŗɱǶȳǖ ʌƨʚ ŗʌ

�(ǋ) ࣖࣖ= {ˢ ∈ C : ʚǫƨɼƨ Ƕʌ ℓ ∈ N ʌʯƉǫ ʚǫŗʚ |ǋȩ+ℓ(ˢ)| ≥ �ȩ
ǋ (Þ), ǑɄɼ ȩ ∈ N},

˝ǫƨɼƨ �ǋ(ɮ) ࣖࣖ= max|ˢ|=ɮ |ǋ(ˢ)| ŗȳƕ Þ > ࡱ Ƕʌ țŗɼǖƨ ƨȳɄʯǖǫࣖ

ࢉࡹ
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(FAST) ESCAPING FATOU COMPONENTS

What is the relation between A(f) and the Fatou set?

▶ Baker domains are not it A(f). [Bergweiler-Hinkkanen, ’99]
▶ All multiply connected wandering domains are in A(f).

[Rippon-Stallard, ’05]

▶ Examples of simply connected fast escaping wandering domains:

• Bergweiler, ’11: f with both mc and sc. wandering domains (using qc
maps).

• Sixsmith, ’12’: f with sc and no mc (infinite product).

▶ Bergweiler and Sixsmith’s examples are bounded.

Question (Rippon and Stallard, ’11)

Can there be any unbounded Fatou components in A(f)?

⋆ Equivalently: Is there a t.e.f. with an unbounded fast escaping
wandering domain?
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PERMUTABLE FUNCTIONS

Question

If f,g are analytic with f ◦ g = g ◦ f, does J(f) = J(g)?

▶ Yes, for rational maps [Fatou, Julia].

▶ For transcendental entire maps, the answer is ‘yes’ if:

• f, g have no escaping Fatou components. [Baker, ’62]
• f, g have no fast escaping Fatou components. [Bergweiler-Hinkkanen, ’99]

Theorem (Benini, Rippon and Stallard, ’16)

If f ◦ g = g ◦ f and f,g have no simply connected fast escaping
wandering domains, then J(f) = J(g).
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SECOND RESULT

Theorem B (Evdoridou-Glücksam-P., ’23)

There exists a transcendental entire function with a fast escaping
unbounded wandering domain.

▶ Our function can be chosen to have different types of internal
dynamics with respect to the boundary.

▶ Our method provides us with control on the growth, and so on
the order, of the function.

ρ(f) ..= lim sup
r→∞

log logMf(r)
log r .
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BAKER’S CONJECTURE

Baker’s conjecture, 1981

Let f be an entire function with order less than 1
2 . Then f has no

unbounded Fatou components.

⋆ Holds for (pre)periodic Fatou components. [Baker, Stallard,...,Zheng].
⋆ Real f with only real zeros and ρ(f) < 1 has no unbounded

wandering domains. [Nicks-Rippon-Stallard, ’18].
⋆ Herman’s example is of order 1.
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EXAMPLES

f(z) = z− 1+ e−z + 2πi.

*Picture from [Rempe-Sixsmith, ’17]
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BAKER’S CONJECTURE

Baker’s conjecture, 1981

Let f be an entire function with order less than 1
2 . Then f has no

unbounded Fatou components.

⋆ Holds for (pre)periodic Fatou components. [Baker, Stallard,...,Zheng].
⋆ Real f with only real zeros and ρ(f) < 1 has no unbounded

wandering domains. [Nicks-Rippon-Stallard, ’18].
⋆ Herman’s example is of order 1.

Theorem C
For every ε ∈ (0, 1/2], there exists f of order ρ(f) = 1

2 + ε with an
unbounded fast escaping wandering domain.
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IDEA OF PROOFS OF THEOREMS B AND C



Theorem A
There exists an entire function with an orbit of unbounded fast
escaping wandering domains.

22



STRATEGY OF PROOFS

We start by designing our (wandering) sets:

We will approximate our model map h.
23



STRATEGY OF PROOFS

Claim: There exists f entire such that:

- f approximates well our model map.
- For each k, and z such that Im(z) < τk, we have an upper bound
on |f(z)|, independent of τj for j ≥ k+ 1.

In particular, {τk} can be chosen so that f has fast escaping
wandering domains.
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HÖRMANDER’S THEOREM

Hörmander’s theorem (the version we need)

Let u : C → R be a subharmonic function. Then, for every locally
integrable function g there is a solution α of the equation ∂̄α = g
such that∫

C
|α(z)|2 e−u(z)

(1+ |z|2)2dm(z) ≤ 1
2

∫
C
|g(z)|2e−u(z)dm(z),

provided that the integral on the right hand side is finite.

▶ We define χ : C → [0, 1] with χ ≡ 1 in almost all the domain of the
holomorphic “model map” h, and zero elsewhere.

▶ We apply Hörmander’s theorem to g(z) ..= ∂̄χ(z) · h(z) and some u
to be chosen.

▶ The function f(z) ..= χ(z) · h(z)− α(z) is entire.
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STRATEGY OF PROOFS

We are left to find the subharmonic function u.

First, to be able to apply the theorem, u must be “big” where g is
supported.

Moreover, for the right choice, f has the desired properties:

▶ Good approximation: where h is defined, |f(z)− h(z)| = |α(z)|.

|α(z)| ≤ · · · ≤ C · exp(u(z)/2).

We want u very negative.
▶ Growth: everywhere, |f(z)| ≈ C2 · |h(z)|+ C3 · exp(u(z)).
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THEOREM C

Theorem C
For every ε ∈ (0, 1/2], there exists f of order ρ(f) = 1

2 + ε with an
unbounded fast escaping wandering domain.

▶ fn(V) ⊂ Bn for all n ≥ 1.
▶ V is contained in a (fast escaping) wandering domain.
▶ u(z) ≤ |z|1/2+ε.
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gràcies per la vostra atenció!


