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Let f: C — C be an entire map.

> Fatou set: set of stability.
F(f) = {z € C: {f"}nen is a normal family in a neighbourhood of z}.

small perturbations ~» small perturbations.

x Fatou component: connected component of F(f).

“maximal domain of stability”.

> Julia set: locus of chaotic behaviour. J(f) = C\ F(f).
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WANDERING DOMAINS

Definition

A wandering domain is a Fatou component U such that
U)NnfmU) =0forallm#n.

* (1985): Rational maps do not have wandering domains.

* But transcendental entire maps do.

° (1976) provided the first example.

® Many others have been found since then.
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f(2) = z +sin(2) + 27.

*Figure by L. Rempe. Wikipedia commons
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fR)=z—-1+e7?+2mi.

*Picture from [Rempe-Sixsmith, 17']
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» Non-wandering Fatou components are fairly well-understood.
» These are (pre)- , that is, f(U) = U for some n > 1.

Theorem (Fatou, 1919)

Let U be a periodic Fatou component of f (period 1). Then, U is either

attracting basin
ff@—peulf(p)l <

Siegel disc
flu conjugate to ez, 9 € R\ Q.

&

parabolic basin
ff(z) = p € 8U,f (p) = 1.

—
—
—
Baker domain
f*(z) = o0, 00 essential sing.
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WANDERING DOMAINS

On the contrary, wandering domains can be quite elusive....

» How do they look?

> Where do they go?
® (Can they stay away from infinity?

» For which functions do they occur?
® Relation with singular values.

*Figures from [Rempe-Sixsmith '17], [Bishop 18], [Marti-Pete, Rempe,Waterman, '22]
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A wandering domain U is of one of the following three types:

» Escaping: f(z) -+ oo asn — oo forallz e U.
.P
@D

> Oscillating: there are subsequences f#(z) — oo and f™(z) /4 oo

forallz e U.
ﬂ@

O-D|— D — DD
— D~ B

o o~ @~ R -

» Bounded-orbit: f'*(z) /4 oo for allz € U and all subseq. (ny).
® Do they exist?
® Stronger version: is there U such that f'(U) c D for all n and some
bounded domain D?
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Examples of entire maps with wandering domains have been
produced via...

> Infinite products. [Baker, Sixsmith..]

» As lifts under exponential maps of invariant Fatou components of
maps of self maps of C\ {0}. [Herman, Fagella, Henriksen..]

» Using quasiregular/quasiconformal maps [Bishop, Shishikura,
Marti-Pete, Lazebnik...].

» Using approximation theory:
® First example of oscillating wandering domain. [Eremenko-Lyubich '87].
® (lassification of internal dynamics.

[Benini-Evdoridou-Fagella-Rippon-Stallard '22].

® Prescription of the shape of wandering domains [Boc Thaler '21].

® lakes of Wada example. [MartiPete-Rempe-Waterman '22].
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FIRST RESULT: NEARLY BOUNDED ORBIT

Theorem A (P--Sixsmith, '23)

There exists an entire function f with a wandering domain U and a
bounded domain D such that

im #{n < k:f"(U) C D} _

k— 00 R

1.

» We can prescribe any regular domain U whose closure in C is a
full compact set (following Boc Thaler's idea).

> Let (n))jen, (M))jen be sequences of natural numbers. We can
prescribe the iterates U spends on D:

Foreach n e N, f'(U) c D if and only if
P

p
> (ni+mi)<n<> (nj+m)+ny, for somep > 0.
i=0 =0
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RUNGE'S THEOREM

Runge’s theorem

Let A be a full compact set. Let h: A — C be a holomorphic function.
Then for every e > 0, there exists a polynomial f such that

If2) = h(2)| <e, forz € A.

Variations:

» The map h can be replaced by a collection hy: A, — C of maps,
with A, pairwise disjoint, as long as
® There are finitely many elements, or
® min{|z|: z€ Ay} = o0 as N — oo.

> Finitely many conditions can be prescribed for each k, that is,
f(Zi,h) = h}?(Z,'ﬂk) and ]q(Z,'yh) = h;(Z,'ﬂk) for ﬁmtely many i



PROOF OF THEOREM A

We iteratively use Runge's theorem on a sequence (f,) such that f,;
approximates f, on A,. "



TOPOLOGY OF WANDERING DOMAINS

simply connected multiply connected

bounded

Not possible.
[Baker, 84]

unbounded
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Points may converge to infinity at different rates.

Theorem (Rippon and Stallard, '11)

Let f be a transcendental entire function. Given any a, — oo, there
exists z € I(f) N J(f) and N € N such that |"(z)| < a, for all n > N.
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What is the relation between A(f) and the Fatou set?

> Baker domains are not it A(f). [Bergweiler-Hinkkanen, '99]

> All multiply connected wandering domains are in A(f).
[Rippon-Stallard, '05]

» Examples of simply connected fast escaping wandering domains:
e Bergweiler, "11: f with both mc and sc. wandering domains (using qc
maps).
e Sixsmith, 12" f with sc and no mc (infinite product).

> Bergweiler and Sixsmith’s examples are

Question (Rippon and Stallard, "11)

Can there be any unbounded Fatou components in A(f)?

* Equivalently: Is there a t.e.f. with an unbounded fast escaping
wandering domain?
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PERMUTABLE FUNCTIONS

Question

If f, g are analytic with fo g = g o f, does J(f) = J(g)?

> Yes, for rational maps [Fatou, Julial.

» For transcendental entire maps, the answer is ‘yes' if:

® f g have no escaping Fatou components. [Baker, '62]
® f g have no fast escaping Fatou components. [Bergweiler-Hinkkanen, '99]

Theorem (Benini, Rippon and Stallard, "16)

If fog=gofandf, g have no simply connected fast escaping
wandering domains, then J(f) = J(9).

16
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SECOND RESULT

Theorem B (Evdoridou-Gliicksam-P, '23)

There exists a transcendental entire function with a fast escaping
unbounded wandering domain.

» Our function can be chosen to have different types of
with respect to the boundary.

» Our method provides us with ,and so on
the order, of the function.

log log M(r
o) = lim sup 288 MAD).

r—o0 log r
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BAKER'S CONJECTURE

Baker's conjecture, 1981

Let f be an entire function with order less than % Then f has no
unbounded Fatou components.

* Real fwith only real zeros and p(f) < 1 has no unbounded
wandering domains. [Nicks-Rippon-Stallard, "18].

* Herman's example is of order 1.

Theorem C

For every e € (0,1/2], there exists f of order p(f) = 3 + £ with an
unbounded fast escaping wandering domain.

20
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STRATEGY OF PROOFS

We start by designing our (wandering) sets:

W,
Lin
|

Sevin
| hi(z —imy) +im
\

Wi '
\

N
. \ | f
« 1Ty e +'3:T| | ||
e e T |I|
Wy

I3 % M
i 80 fimy /7

We will approximate our model map h.
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Claim: There exists f entire such that:

- fapproximates well our model map.
- For each Rk, and z such that Im(z) < 7, we have an upper bound
on [f(z)|, independent of 7; forj > R +1.
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In particular, {mx} can be chosen so that f has fast escaping
wandering domains.
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HORMANDER’'S THEOREM

Hormander’s theorem (the version we need)

Let u: C — R be a subharmonic function. Then, for every locally
integrable function g there is a solution a of the equation da = g
such that

U(Z) 1 2 ,—u(z
[ e@P S am@ < 5 [ s@PeOdm(z),

provided that the integral on the right hand side is finite.
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> We define x: C — [0,1] with x = 1in almost all the domain of the
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Hormander’s theorem (the version we need)

Let u: C — R be a subharmonic function. Then, for every locally
integrable function g there is a solution a of the equation da = g
such that

U(Z) 1 2 ,—u(z
[ e@P S am@ < 5 [ s@PeOdm(z),

provided that the integral on the right hand side is finite.

> We define x: C — [0,1] with x = 1in almost all the domain of the
holomorphic “model map” h, and zero elsewhere.

> We apply Hérmander's theorem to g(z) == dx(2) - h(z) and some u
to be chosen.

» The function f(2) := x(2) - h(z) — «(2) is entire.
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STRATEGY OF PROOFS

We are left to find the subharmonic function u.

First, to be able to apply the theorem, u must be “big” where g is
supported.

Moreover, for the right choice, f has the desired properties:
> where h is defined, |f(z) — h(z)| = |a(2)|.
a(2)] < -+ < C- exp(u(2)/2).

We want u very negative.

> everywhere, |f(2)| = G, - |h(2)| + G - exp(u(2)).
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THEOREM C

Theorem C

For every e € (0,1/2], there exists f of order p(f) =  + £ with an
unbounded fast escaping wandering domain.
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Theorem C

For every e € (0,1/2], there exists f of order p(f) =  + £ with an
unbounded fast escaping wandering domain.

> (V) C B, foralln>1.

> Vis contained in a (fast escaping) wandering domain.
> u(2) < |2/,

B;
B o ~_f =1 B| /'/- 2 ™.
T T T / %\
vV T £ \\ 1 f——f— - 1
S >Xoa )\ [ < .
= 7 B )
. = \ /
— N d

27



gracies per la vostra atencio!




