Dinamica d'aplicacions simpl ` ectiques ` quasi-integrables.

6a Jornada de Sistemes Dinamics de Catalunya `

Barcelona, 11/10/2023.

Arturo Vieiro *^a*

vieiro@maia.ub.es

Universitat de Barcelona

Departament de Matemàtiques i Informàtica

*^a*Xerrada basada en els treballs conjunts amb V.Gelfreich (Univ. Warwick)

Motivation of this work

To develop and illustrate some tools to study the dynamics of quasi-integrableanalytic exact-symplectic maps of $\mathbb{R}^d \times \mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$

$$
F_{\varepsilon} : \begin{cases} \bar{I} = I + \varepsilon a(I, \varphi), \\ \bar{\varphi} = \varphi + \omega(I) + \varepsilon b(\bar{I}, \varphi) \pmod{1}, \end{cases}
$$

implicitly defined by the generating function

 $S(\bar{I},\varphi) = \bar{I}\,\varphi + h_0(\bar{I}) + \varepsilon s(\bar{I},\varphi), \;\;\; h_0 \;$ convex function, $h_0'(I) = \omega(I),$ through the relations $I=\,$ $\hat{\rho} = \partial S/\partial \varphi, \ \bar{\varphi} = \partial S/\partial \bar{I}.$

We want to study the long term (Nekhoroshev) global stability properties of F_{ε} and perform ^a careful (local/global) exploration of the geometry of the phasespace and diffusive properties (numerical tools).

Consider $0<\varepsilon<\varepsilon_0$ and denote $(I_k,\varphi_k)=F^k_\varepsilon$ For $d = 1$, the rotational invariant curves divide the 2D phase space and there $\epsilon^{k}(I_{0},\varphi_{0}% ,\varphi_{1},$ $_{0}),$ $k\in\mathbb{Z}.$ is no global diffusion if ε is small enough (e.g. Chirikov standard map). For $d\geq2$, the complement of KAM d -dimensional discrete tori is connected and trajectories might travel along phase space (Arnold diffusion).

 $^{\textit{a}}$ Nekhoroshev estimate: $|I_{k}|$ $R(\varepsilon)\thicksim \varepsilon^{\beta}$ and $T(\varepsilon)\thicksim \exp(c/\varepsilon^{\alpha})$ with $\alpha=\beta=1/(2(c))$ $|I_0| \leq R(\varepsilon)$ when $|k| \leq T(\varepsilon),$ where $\sim \varepsilon^\beta$ and $T(\varepsilon)$ ∼ $\sim \exp(c/\varepsilon^{\alpha})$ $^{\alpha})$ with $\alpha=$ $\beta = 1/(2(d+1)).$

Our main interest is not in the result itself (which is well-known) but in themethodology: we shall recover this estimate from an <mark>explicit construction of</mark> the slow variable directly from the iterates of the map (IVFs).

^aS.Kuksin and J.Pöschel, *On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications.* Seminar on Dynamical Systems 12:96–116, 1994.

P.Lochak and A.I.Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos 2, 1992.

Diffusion along phase space takes place basically along single resonances but multiple resonances play ^a key role in an explanation of the Arnold diffusion. To illustrate this we consider the map T_δ defined by the generating function

$$
S(\psi_1, \psi_2, J_1, J_2) = \psi_1 \bar{J}_1 + \psi_2 \bar{J}_2 + \delta \mathcal{H}(\psi_1, \psi_2, \bar{J}_1, \bar{J}_2), \text{ where}
$$

$$
\mathcal{H}(\psi_1, \psi_2, \bar{J}_1, \bar{J}_2) = \frac{J_1^2}{2} + a_2 J_1 J_2 + a_3 \frac{J_2^2}{2} + \cos(\psi_1) + \epsilon \cos(\psi_2),
$$

through the relations $J_i = \partial S/\partial \psi_i$, $\bar{\psi}_i = \partial S/\partial \bar{J}_i$, $i=1,2$:

$$
T_{\delta}: \begin{pmatrix} \psi_1 \\ \psi_2 \\ J_1 \\ J_2 \end{pmatrix} \mapsto \begin{pmatrix} \bar{\psi}_1 \\ \bar{\psi}_2 \\ \bar{J}_1 \\ \bar{J}_2 \end{pmatrix} = \begin{pmatrix} \psi_1 + \delta(\bar{J}_1 + a_2 \bar{J}_2) \\ \psi_2 + \delta(a_2 \bar{J}_1 + a_3 \bar{J}_2) \\ J_1 - \delta \sin(\psi_1) \\ J_2 - \delta \epsilon \sin(\psi_2) \end{pmatrix}
$$

 ${\cal H}$ resembles to a "two-pendulum" Hamiltonian and T_δ is δ -close to the Id. Single resonance: NHIC \approx ric of a pendulum system \times saddle of the other Double resonance: $\approx (\psi_1,J_1)$ -pendulum \times (ψ_2,J_2) -pendulum **m** $p.5/36$

Role of double resonances

 $\delta=\epsilon=a_2=0.5, a_3=1.25$. Lyap. exp. (megno): **black** \rightarrow chaotic, green \rightarrow weakly chaotic, white \rightarrow regular. Red: Iterates of the point $(0,0,4.5,-5.25)$ in a slice of width 5×10^{-7} 3 around $\psi_1=\psi_2=0$ (left plot) and $\psi_1=\psi_2=\pi$ π (right plot). Total number of iterates= 10^{12} .

Lochak approach steps

The role of maximum (*double* if $d=2$) resonances is emphasized in the Lochak-Neishtadt approach to proof the Nekhoroshev estimates. The map F_ϵ is the isoenergetic Poincaré return map of a $(d+1)$ -dof analytic Hamiltonian

> $\hat{H}(\hat{I},\hat{\psi},\epsilon)=\hat{H}_{0}(\hat{I})+$ $\hat{I}=(I,I_3),\hat{\psi}=(\psi,\psi_3),\hat{w}(\hat{I})=(w(I),1),$ and $\hat{H}_0(\hat{I})=\hat{\omega}(\hat{I})\cdot\hat{I}.$ $\epsilon \hat H_1(I,\hat \phi,\epsilon),$ where

- 1. Construct a covering of the action space by open neighbourhoods of a finite number (depending on ϵ) of unperturbed tori bearing periodic motions (maximum resonances).
- 2. Normalize the Hamiltonian around ^a periodic orbit: by successive changesof variables (averaging procedure) the non-resonant terms of H can be annihilated within an exponentially small error \leadsto slow observable
- 3. Use convexity to guarantee exponential stability in the neighbourhood.

Indirect procedure: The evaluation of the local (in each domain of the covering)slow observable (to measure diffusion) requires a transformation to NF. prints

"Our Lochak-like approach"

Note that, for a map $F_\varepsilon=F_0+\mathcal{O}(\varepsilon)$, $F_0(I,\varphi)=(I,\varphi+\omega(I)),$ if \mathbf{M} \mathbf{r} \mathbf{m} \mathbf{d} \mathbf{r} \mathbf{r} \mathbf{r} $n\omega(I_*)\in\mathbb{Z}^d$ for some $n\in\mathbb{N}$ and $I_*\in\mathbb{R}^d$ then $I=I_*$ is a torus invariant by F_0 foliated by invariant n -periodic orbits. Note that near I_* the map F^n_ε εbecomes close-to-the-identity.

Our proof of the Nekhoroshev theorem is based on ^a refinement of Neishtadt's <mark>averaging theorem</mark> of approximation of a close-to-Id map by an autonomous Hamiltonian flow with an <mark>exponential small error</mark>.

Our construction of an approximating vector field is based on the discrete averaging and interpolating vector fields (IVFs): it is explicit in terms of iterates of the map, can be easily implemented numerically and <mark>avoids changes o</mark>f variables.

Next we study close-to-Id maps and IVFs. Later we will come back to the stability problem for near-integrable maps.

Close-to-identity maps and IVFs

Interpolating vector fields (IVFs)

Let $f:\mathcal{U}\mapsto\mathbb{R}^s$ real analytic on $\mathcal{U}\subset\mathbb{R}^s$ open domain. Let $m\geq 0$ and assume that there is $\mathcal{U}_0 \subset \mathcal{U}$ such that $f^k(\mathcal{U}_0) \subset \mathcal{U}$ for $0 \leq k$ $x_k=f^k(x_0), x_0\in \mathcal{U}_0.$ There is a unique polynomial $P_m(t;x_0)$ $\kappa(\mathcal{U}_0) \subset \mathcal{U}$ for $0 \leq k \leq m.$ Denote in t such that $P_m(k;x_0)=x_k$ for $0\leq k\leq m.$ f^k $^{k}(x_0), x_0$ $\mathcal{O}_0\in\mathcal{U}_0$. There is a unique polynomial $P_m(t; x_0)$ of order m

Definition. The interpolating vector field (IVF) X_m at $x\in\mathcal{U}_0$ is the velocity vector of the interpolating curve at $t=0$, that is, $X_m(x_0)=\partial_t P_m(0,x_0)$ $_0).$

1. $X_m(x_0) = \sum_{k=1}^m$ p_{m0} the F $\frac{m}{k=0}\,p_{mk}f^k$ $^k(x_0)$ is a weighted average of the iterates with $_0$ the Harmonic number and for $k >1$

$$
p_{mk} = (-1)^{k+1} \frac{m+1-k}{k(m+1)} {m+1 \choose k}.
$$

2. Numerics: higher accuracy for symmetric interpolation nodes around $x_{0}.$ (i.e. we consider p_{2m} s.t. $x_k=p_{2m}(t_k;x_0,\epsilon),~\forall t_k=\epsilon k,~|k|\leq m$ m s.t. $x_k = p_{2m}(t_k; x_0, \epsilon)$, $\forall t_k =$ $=\epsilon k, |k| \leq m.$

IVF-embedding ^a near-Id map into ^a flow

Consider ^a smooth one-parameter near-Id family of maps

$$
f_{\epsilon}(x) = x + \epsilon G_{\epsilon}(x).
$$

and interpolation nodes $t_k=$ $=\varepsilon k.$

- 1. X_m extends continuously to $\epsilon=0$ and $X_m(x,0)=G_0(x)$ the limit v.f.
- 2. f_ϵ is close to the time- ϵ flow of the IVF: a If $f_\epsilon\in\mathcal{C}^2$ $^{m+1}$ and $\mathcal{U}_0\subset\mathcal{U}$ compact, then the IVF X_{2m} $_{m}$ is uniformly bounded in \mathcal{U}_{0} for $|\epsilon|<\epsilon_{0}$ $_0$ and

$$
F_{\epsilon}(x) = \Phi_{X_{2m}}^{\epsilon}(x) + O(|\epsilon|^{2m+1}).
$$

Remark. This result was obtained by relating IVF with the "suspension+averaging" procedure (not explicit!). If f_ϵ is analytic in a complex neighbourhood of \mathcal{U}_0 and we choose $m\sim\epsilon^{-1}$ then the we proved that the IVF interpolates f_ϵ with an exponentially small error.

^aV.Gelfreich and AV, Interpolating vector fields for near identity maps and averaging, Nonlinearity 31(9), 4263–4289, 2018**8** $p.11/36$

*Example: Chirikov standard map on*S1 $^1 \times \mathbb{R}$

$$
M_{\epsilon}: (x, y) \mapsto (\bar{x}, \bar{y}) = (x + \epsilon \bar{y}, y - \epsilon \sin(x)), \quad \epsilon \in \mathbb{R}.
$$

 $\epsilon = 0.1$, same 200 i.c. Left: 10^3 iterates of M_ϵ . Right: RK78 integration of X_{10} up to $t\,=\,10^3$ plotting every $\Delta t=0.1$. No visual differences!

IVF-exponential embedding of ^a near-Id map

Let f an exact symplectic map ϵ -close-to-Id in $D=D_0+\delta$ a complex δ -neighbourhood of $D_0\subset \mathbb{R}^{2d}.$ Assume it admits a gen ϵ $G(P,q) = P q + S(P,q)$ such that S can be analytically continued onto D $\ ^{d}$. Assume it admits a generating function and denote by $\epsilon=\Vert$ $\mathbf{\mathcal{H}}$ $\nabla S\|$ $\big\|_D.$ As before X_m is the IVF.

Theorem [GV23]. If
$$
m = \left| \frac{\delta}{6e \epsilon} - d \right| \ge 1
$$
, then

$$
\|\Phi_{X_m} - f\|_{D_0} \le 3 e^{d+2} \epsilon \exp(-\delta/ (6e \epsilon)).
$$

Moreover there is a Hamiltonian interpolating vector field \hat{X}_m $_m$ such that

$$
\|\hat{X}_m - X_m\|_{D_1} \leq 3 e^{d+1} \epsilon \exp\left(-\delta/6 e \epsilon\right),
$$

where D_1 is the $\frac{\delta}{2}$ 2 $\frac{o}{2}$ -neighbourhood of D_0 , and

$$
\|\Phi_{\hat{X}_m} - f\|_{D_0} \le 5 e^{d+2} \epsilon \exp\left(-\delta/6e \epsilon\right).
$$

We need to explicitly control of the constants in front of $\epsilon^m.$ Indeed, under the assumption of the theorem for every $1\leq m < \delta/(6\epsilon)-d$ the following inequalities hold: $\|X_m\|_{D_1}\leq 2\epsilon,$ $\|\hat{X}_m\|_{D_1}\leq 4\epsilon,$

$$
\|\Phi_{X_m} - f\|_{D_0} \le 3C_m^{m-1} \epsilon^m, \qquad \|\Phi_{\hat{X}_m} - f\|_{D_0} \le 5C_m^{m-1} \epsilon^m,
$$

$$
\|\hat{X}_m - X_m\|_{D_1} \le 8C_m^m \epsilon^{m+1}
$$

where $C_m = 6(m+d)/\delta.$ The exponential bound is obtained by choosing m to minimize the error bound: $m\approx\delta/6$ e $\epsilon.$

Direct explicit proof! (sketch of ideas)

1. We embed f into a family of symplectic maps f_μ (homotopy):

$$
G_{\mu}(P,q) = Pq + \mu S(P,q)
$$

- 2. Choose $|\mu| < \delta/(2\epsilon(m+d))$ so that $x_j \in D,$ $0 \leq j \leq m,$ for all $x_0\in D_1.$ This imply analyticity of $X_{m,\mu}.$
- 3. The proof of the first inequality reduces to bound the IVF $X_{m,\mu}$ of f_μ on $D_1.$ If ξ = $i=id$ and $T_f(g)=g \circ f$, one has $X_{m,\mu}=-\sum_{k=1}^m\frac{1}{k}(I-T_{f_\mu})$ use the MMP to bound $X_{m,\mu}$ (decreasing the analyticity strip in μ). $\sum_{k=1}^m$ $k{=}1$ 1 $\frac{1}{k}(I (T_{f_\mu})^k \xi,$ and, since $\mathrm{val}_\mu((I-\tau))$ $T_{f_\mu})^k$ $\left(k\xi\right)\geq k$, we
- 4. The IVF $X_{m,\mu}$ is not Hamiltonian but the m -jet in μ

$$
\hat{X}_{m,\mu} = \sum_{k=1}^{m} \frac{1}{k!} \partial_{\mu}^{k} X_{m,\mu} \big|_{\mu=0} \mu^{k}
$$

is a Hamiltonian vector field. \blacksquare

Obtaining Nekhoroshev estimates

Following Lochak-Neishtadt approach

We investigate iterates $(I_k,\varphi_k) = F_{\varepsilon}^k$ If $n\,\omega(I_*)\in\mathbb{Z}^d$ for some $n\in\mathbb{N}$ and $I_*\in\real^d$, then the equation $I=I_*$ $\epsilon^{k}(I_{0},\varphi_{0}% ,\varphi_{1},$ $_{\rm 0})$ of an arbitrary initial condition. defines a torus filled with periodic orbits of the integrable map $F_{\rm 0}.$ In a neighbourhood of $I=I_*$ we consider the lift of F^n_ε \mathcal{E}^n given by

$$
f_{\varepsilon}^n : (I_0, \varphi_0) \mapsto (I_n, \varphi_n - n\omega(I_*)).
$$

Trajectories of F^n_ε Concretely, we study iterates of f_ε^n ℓ_{ε}^n and f_{ε}^n $\mathcal{E}^n_\varepsilon$ coincide when angles are considered modulo one. $\mathcal{D}_\varepsilon^n$ in $\mathcal{D}_0(I_*)=B(I_*,\rho_r)$ $_n)\times\mathbb{R}^d$ a, where

$$
\rho_n = \rho_{\varepsilon}/n
$$
, $\rho_{\varepsilon} = \gamma N_{\varepsilon}^{-1/d} = \gamma \varepsilon^{1/2(d+1)}$, $N_{\varepsilon} = \varepsilon^{-d/2(d+1)}$.

The constant γ is independent of n and $\varepsilon.$ If γ is sufficiently large these domains completely cover the domain of the map F_ε provided we consider all fully resonant tori with $n < N_\varepsilon.$ This is a consequence of Dirichlet theorem on simultaneous approximation and convexity of $h'_0(I)=\omega(I)$ $\bigg)$.

Covering: frequency space

Dirichlet theorem: For any $\omega\in\mathbb{R}^d$ and any $N>1$ there is a vector $\omega_*\in\mathbb{Q}^d$ and $n\in\mathbb{N}$ such that $1\leq n< N$, $n\omega_{*}\in\mathbb{Z}^{d}$ and $|\omega-\omega_{*}|<\frac{1}{nN^{1/3}}$ $_{*}\in\mathbb{Z}^{d}$ and $|\omega$ $\vert-\omega_*\vert<\frac{1}{nN}$ $nN^{1/d}$.

 \Rightarrow the balls $B(k/n,n^{-1})$ whole frequency space \mathbb{R}^d $\mathbb{1}\hspace{-1.5pt}N^{-1/d})$ with $k\in\mathbb{Z}^d$ and $1\leq n< N$ cover the .

Left: Resonant lines up to order 10 . Center: We consider n up to $N=6$ and we plot a circle of radius $\frac{1}{2}$ $n\sqrt{N}$ larger N is needed. But to cover the resonances $(1,0)$ and $(0,1)$ we need $\frac{1}{N}$ around. Right: Same for $N=10.$ As $\epsilon \searrow 0$ periods $\ll N$. **p**.18/36

Interpolation near ^a fully resonant torus

In $\mathcal{D}(I_*)=\left\{\,(I,\varphi)\in\mathbb{C}^2\right\}$ \mathbf{r} \mathcal{L} is the latter and the set of \mathcal{D} . $\,d$ $^{d}:\left\vert I\right\vert$ complex neighbourhood of $\mathcal{D}_0(I_*),$ we introduce the scaled action $|I_*| < 2\rho_n, |\operatorname{Im}(\varphi)| < r/2\,\big\}$, a $I=I_*+\rho_nJ$ so that the lift f_{ε}^n $\mathcal{E}^n_\varepsilon$ can be written as

$$
\hat{f}_{\varepsilon}^{n} : \begin{cases} \bar{J} = J + \rho_{n}^{-1} \varepsilon \sum_{k=0}^{n-1} a(I_{k}, \varphi_{k}), \\ \bar{\varphi} = \varphi + \sum_{k=0}^{n-1} (\omega(I_{k}) - \omega(I_{*})) + \varepsilon \sum_{k=0}^{n-1} b(I_{k}, \varphi_{k}), \end{cases}
$$

which is ϵ_n -close-to-Id in $\mathcal{D}(I_*),$ with

$$
\epsilon_n \leq \max \left\{ C_1 \rho_n^{-1} n \varepsilon, C_2 n \rho_n \right\} \leq C_3 \varepsilon^{1/2(d+1)}.
$$

By the interpolation theorem: there is $m=m(\epsilon)$ time-one map of the Hamiltonian vector field \hat{X}_m v $\sim \epsilon^{-1}$ $\, n_{\textstyle{\cdot}}$ n^{-1} such that the $_m$ verifies

$$
\left\|\hat{f}_{\varepsilon}^n - \Phi_{\hat{X}_m}\right\|_{B(0,1)\times\mathbb{R}^d} \le 5e^{d+2} \exp\left(-\gamma_0 \varepsilon^{-1/2(d+1)}\right).
$$

p.19/36

Long term stability of actions (key points)

The Hamiltonian H_m corresponding to \hat{X}_m $_{m}$ is used to bound the actions.

1. SinceOne has $S_n(\bar{J},\varphi) = S_n^L$ \hat{f}^n_ε $\mathcal{E}^n_\varepsilon$ is exact symplectic it derives from a generating function $S_n.$ $\,n$ $\frac{dL}{n}(\bar{J}, \varphi) + w_n(\bar{J}, \varphi)$, where

$$
S_n^L(\bar{J},\varphi) = n\rho_n^{-1}\big(h_0(I_* + \rho_n\bar{J}) - h_0(I_*) - \rho_n\langle h'_0(I_*),\bar{J}\rangle\big)
$$

If γ is large enough then $\|w_n\|\leq \nu\rho$ $_{\epsilon}/9$ where $\nu=$ convexity constant of $h_0.$ Relating H_m with S^L_n $\, n \,$ $_n^L$ one can use convexity of h_0 , and adapt Lochak-Neishtadt reasoning for flows to this setting.

2. The energy change by iterate of \hat{f}^n_ε $\frac{n}{\varepsilon}$ is exponentially small

$$
\left\| H_m \circ \hat{f}_{\varepsilon}^n - H_m \right\| = \left\| H_m \circ \hat{f}_{\varepsilon}^n - H_m \circ \Phi_{\hat{X}_m} \right\| \leq \left\| H_m' \right\| \left\| \hat{f}_{\varepsilon}^n - \Phi_{\hat{X}_m} \right\|
$$

= $\left\| \hat{X}_m \right\| \left\| \hat{f}_{\varepsilon}^n - \Phi_{\hat{X}_m} \right\| \leq 20 \epsilon_n e^{d+2} \exp \left(-\gamma_0 \varepsilon^{-1/2(d+1)} \right).$

 \rightsquigarrow If $|I_0$ where $T_{\rm Nek}\geq \frac{n\nu}{240\epsilon_n{\rm e}^{d+2}}\exp\left(\gamma_0\varepsilon^{-1/2(d+1)}\right)\Longrightarrow$ Nekhoroshev estir $\left|I_{*}\right|\leq\sqrt{\nu}\rho_{n}/6\|w^{\prime}\|$, then $\left|I_{kn}\right|$ $|I_*|\leq \rho_n$ $_n$ for $0 \leq kn \leq T_{\rm Nek}$, $\frac{n\nu}{\epsilon_n{\rm e}^{d+2}}\exp\big(\gamma_0\varepsilon^{-2}$ 1 $1/2(d+1)$ $\big)$ \Longrightarrow Nekhoroshev estimates.

Exploring diffusion

Consider F_ε near-integrable 4D map, then:

- 1. **Near ^a double resonance:** Closer to ^a tori bearing periodic orbits of short period $n,$ the distance-to-Id of the lift f_ε^n becomes smaller. Hence, h^N_m is well-preserved for a much larger numl $\mathcal{E}^n_\varepsilon$ of the near-integrable map F_ε^n ε $\,m$ $\frac{1}{m}$ is well-preserved for a much larger number of iterates. This prevents orbits from getting close to or escaping from ^a small neighbourhood of the double resonance in ^a moderate number of iterates.
- 2. **Single resonances:** For double resonances of different enough order, hence with large $n,$ $h^n_{\bm{n}}$ $m\,$ $\frac{n}{m}$ is badly preserved since f_{ε}^n $\frac{n}{\varepsilon}$ is far-from-Id. This is responsible of the fast drift along single resonances typically observed.

Computation of an adiabatic invariant

Numerically we do not compute the Hamiltonian from \hat{X}_m . Instead we directly compute an adiabatic invariant h_m s.t. $J\nabla h_m\approx N$ follows. Consider a near-Id map f_ϵ such that $f_\epsilon^*(\omega)=\omega$ wh ϵ \mathcal{L}_m s.t. $J\nabla h_m \approx X_m = (X_m^i)_{i=1,...,2d}$ as $\omega=\sum_{i=1}^d dx_i\wedge dx_{i+d}$ standard symplectic form. I $\chi_\epsilon^*(\omega) = \omega$ where $\nu_m=\omega(X_m,\cdot)=\sum_{1\leq i\leq d}\left(X^i_m\right)$ $\sum_{i:}^d$ $i{=}1$ $\int dx$ $\int\limits_{0}^{\infty}$ \wedge dx $_{i+d}$ standard symplectic form. Let define for every $x\in D_0$ $\frac{i}{m}dx_{i+d}-X_m^{i+1}$ $\,d$ m_\parallel $\int_{m}^{i+d} dx$ $_i).$ Given $p_0\in D_0$

$$
h_m^\epsilon(x; p_0) = \int_{\gamma(p_0,x)} \nu_m \ , \qquad \text{along a path } \gamma(p_0,x) \text{ from } p_0 \text{ to } x.
$$

 $\mathsf{Lemma}[\mathsf{GV23}].$ If f_ϵ is defined on \mathbb{T}^2 piecewise path with straight segments parallel to the (ordered) axes, then $^2 \times \mathbb{R}^2$ and h_m $_{m}$ is computed along a $\,$ there is a constant c_1 and a periodic function c_2 s.t.

$$
\tilde{h}_m^{\epsilon}(x; p_0) = h_m^{\epsilon}(x; p_0) - c_1(x^0 - p_0^0) - c_2(x^0)(x_1 - p_0^1),
$$

is globally well-defined on \mathbb{T}^2 $^2 \times \mathbb{R}^2$.

\bm{L} *Correction of* h_m *to be periodic*

Lemma [GV18]. For any compact $\tilde{D}_0 \subset D_0$ and $\forall x \in \tilde{D}_0,$ one has $h_m(f_\epsilon(x), \epsilon) - h_m(x, \epsilon) = O(\epsilon^m),$

i.e. h_m is approximately preserved for ϵ^{-m} iterates.

Remark: \tilde{h}_m is an exponentially small in ϵ correction of h_m :

We consider T_δ for $\delta=0.2.$

Left: h_{20} and \tilde{h}_{20} of points $(\psi_1,\psi_2,0,0)$ with base point $p_0=(\pi,\pi,0,0).$ Right: Their difference.

Remark: The behaviour is independent of the choice of $p_0.$

IVFs- "Poincare" sections to visualize dynamics ´

Let $g:\mathbb{R}^m\to\mathbb{R}$ smooth s.t. $\Sigma=\{x\in\mathbb{R}^m: g(x)=0\}$ is a smooth hyper-surface of codimension one. Take $x_0\in D_0$ and iterate $x_{k+1}=f_\epsilon(x_k).$ Assume that $g(x_k)g(x_{k+1})\leq 0$ (crossing). If the limit vector field G_0 is (locally) transversal to Σ then, for ϵ small enough, there is a unique $t_k \in [0,\epsilon]$ such that $g(\Phi_{X_n}^{t_k} (x_k)) = 0.$ −→ \rightarrow Plot $y_k = \Phi_{X_n}^{t_k}(x_k)$ instead of (any other projection of) $x_k.$

Visualizing 4D near-Id dynamics: For a map like T_δ , obtained as a discretization of $H=J_{1}^{2}/2+a_{2}J_{1}J_{2}+a_{3}J_{2}^{2}/2+V(\psi),$ $\Sigma=\{\psi_{1}=\psi_{2}\}$ is a transversal section (if $|\delta|$ small enough). On a moderate time scale the iterates of $x_0 \in \mathbb{T}^2 \times \mathbb{R}^2$ remain close to the "energy" surface $M_{E}^{m}=\{x:h_{m}(x,p_{0})=E\},$ where $E=h_{m}(x_{0},p_{0}).$ At each crossing, we project onto Σ along the IVF X_n to get $y_{k_j}\in\Sigma.$ For E large enough, one has $M_E^n\cong \mathbb{T}^3.$ Then $\psi=\psi_1=\psi_2,$ $\phi=\arg(J_1+iJ_2)$ are convenient $\cong \mathbb{T}^2$.

coordinates on $\Sigma\cap M_E^n\cong$

T_{δ} , δ = 0.35, 400 *i.c.* on $\Sigma \cap \{h_{10} = 4\}$, 500 *it*

p.26/36

Turning at ^a resonant crossing

 $T_\delta, \, \delta=0.4$. Left: IC $(3,3,2.136447,-3.904401)$ near $J_1+a_2J_2\approx 0.8$ We perform around 10^8 (resp. $10^{10})$ iterates and show in blue (resp. red) iterates on $\Sigma=\{\psi_1=$ Right: Energy levels (s1 and s2 above the level of the crossing observed). $\psi_2\}$ with $|\psi\>$ 1− $\pi | < 0.35.$ Similar for most orbits.

"Poincare" sections & last "RIC" ´

Approaching the HH-point (with $h\,=\,0)$ of the double resonance the projection "Poincaré" maps become more chaotic. The last "rotational invariant curve" is at $h~\approx$ $h(\pi,\pi,J_1,-a_2J_1)\ \approx\ 5.209.$ It corresponds to $J_1~\approx~1.625$. Numerical simulations detect passages for $1.37 \lesssim J_1 \lesssim 1.5$. p.28/36

Diffusion around double resonances

Different patterns depending on the different time-scales (i.e. depending on $\epsilon,$

the order of the resonance n and the structure of f_ε^n $\binom{n}{\varepsilon}$:

Inside red circle: h^n_{∞} $\frac{m}{m} \sim$ ctant

longer time-scale

Inside blue circle: h^n_{∞} $\,m$ $\frac{n}{m}$ evolves on a $\frac{n}{m}$ medium time-scale

Reflection Turning shorter angle Turning around

(single resonance)

Different crossings

We use a 4D map with a potential $V(\psi)=\frac{\cos(\psi_1)+\epsilon \cos(\psi_2)}{3(\cos(\psi_1)+\epsilon \cos(\psi_2)+3)},$ hence with all harmonics, an look at different resonances. Illustrations for $\delta=0.2$.

From left to right, "Poincaré" sections using $h^{n=1}$ and $J=1.6,\ 0.8,\ 0.4.$

Different crossings

From left to right, "Poincaré" sections using $h^{n=2}$ (res 1:2, $J=8.4$) and $h^{n=5}$ (res 2:5, $J=6.6$) Movie

IVFs - quantitative information on diffusion

Local diffusive properties: oscillations of h_m m along a single resonance.

Final comments and conclusions

IVF - other settings: near-conservative dynamics

Example: Dissipative standard map*a*

$$
M_{\epsilon,\delta}: (x,y) \mapsto (\bar{x},\bar{y}) = (x + \delta \bar{y}, (1-\epsilon)y - \delta \sin(2\pi x) + c), \quad \epsilon \in \mathbb{R}.
$$

We consider $\delta\approx3.57\times10^{-1}$ $^{-1}$, $\omega\approx6.18\times10^{-1}$ and $\epsilon=10^{-2}$ (left), 10^{-3} (center/right).

The origin is an attracting focus. Preliminary numerical exploration indicate that the probability of captureby the focus can be defined as the <mark>rat</mark>io between the entrance/exit stri<mark>ps</mark> (one can avoid homoclinics).

*^a*Ongoing work with R.Calleja

IVF - other settings: discrete Lorenz attractors

Lorenz map: $\bar{x}=x+\delta(\sigma(y))$ $(x)),\ \bar y=y+\delta(\bar x(\rho$ $(z)-y),\ \bar{z}=z+\delta(\bar{x}y)$ $8z/3).$ *a*

For δ small, we use IVF to compute kneading diagram, (ρ,σ) -parameter space (top right $\delta=0.001,$ top left $\delta=0.06$), reduce dynamics to 1D-"Poincaré maps" (bottom left, $\delta=0.001$), and compute the region with pseudohyperbolic discrete Lorenz-like attractors (bottom right, $\delta=0.01$).

*^a*A.Kazakov, A.Murillo, AV, K.Zaichikov, "Numerical study of discrete Lorenz-like attractors." Submitted to RCD.

Conclusions & future work

• IVFs – ^a numerical tool to study near-Id dynamics:

We have used IVFs to investigate the key <mark>ro</mark>le of double resonances in the diffusion process. They allow to compute the slowest variable h_{m} at any point of the phase (useful for visualizations/quantitative simulations of diffusion) from simulations in original system variables.

• IVFs – analytical tool to study near-Id dynamics:

The relation of IVFs with discrete averaging allow to obtain <mark>optimal and explicit</mark> theoretical results: exponential embedding of ^a symplectic near-Id map into ^a Hamiltonian flow and Nekhoroshevestimates for near-integrable maps.

- What's next? Many Arnold diffusion questions...
	- \blacktriangleright Determine ^ε-ranges for which the different regimes near ^a double resonance are observed. "last invariant torus"?
	- \blacktriangleright The stochastic limit needs to be clarified, and convergence to ^a local Gaussian process justified. Role of high order resonances?
	- ► Can we construct the "effective graph" of diffusion for a given IC (and for a given simulation
time)? This require to edent equation to the IC time)? This require to adapt covering to the IC.

Thanks for your attention!!