Dinàmica d'aplicacions simplèctiques quasi-integrables.

6a Jornada de Sistemes Dinàmics de Catalunya

Barcelona, 11/10/2023.

Arturo Vieiro ^a

vieiro@maia.ub.es

Universitat de Barcelona

Departament de Matemàtiques i Informàtica

^aXerrada basada en els treballs conjunts amb V.Gelfreich (Univ. Warwick)

Motivation of this work

To develop and illustrate some tools to study the dynamics of quasi-integrable analytic exact-symplectic maps of $\mathbb{R}^d \times \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$

$$F_{\varepsilon}: \begin{cases} \bar{I} = I + \varepsilon a(I, \varphi), \\ \bar{\varphi} = \varphi + \omega(I) + \varepsilon b(\bar{I}, \varphi) \pmod{1}, \end{cases}$$

implicitly defined by the generating function

 $S(\bar{I}, \varphi) = \bar{I} \varphi + h_0(\bar{I}) + \varepsilon s(\bar{I}, \varphi), \quad h_0 \text{ convex function, } h'_0(I) = \omega(I),$ through the relations $I = \partial S / \partial \varphi, \ \bar{\varphi} = \partial S / \partial \bar{I}.$

We want to study the long term (Nekhoroshev) global stability properties of F_{ε} and perform a careful (local/global) exploration of the geometry of the phase space and diffusive properties (numerical tools).

Consider $0 < \varepsilon < \varepsilon_0$ and denote $(I_k, \varphi_k) = F_{\varepsilon}^k(I_0, \varphi_0), k \in \mathbb{Z}$. For d = 1, the rotational invariant curves divide the 2D phase space and there is no global diffusion if ε is small enough (e.g. Chirikov standard map). For $d \ge 2$, the complement of KAM d-dimensional discrete tori is connected and trajectories might travel along phase space (Arnold diffusion).

^a Nekhoroshev estimate: $|I_k - I_0| \leq R(\varepsilon)$ when $|k| \leq T(\varepsilon)$, where $R(\varepsilon) \sim \varepsilon^{\beta}$ and $T(\varepsilon) \sim \exp(c/\varepsilon^{\alpha})$ with $\alpha = \beta = 1/(2(d+1))$.

Our main interest is not in the result itself (which is well-known) but in the **methodology**: we shall recover this estimate from an explicit construction of the slow variable directly from the iterates of the map (IVFs).

^aS.Kuksin and J.Pöschel, On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications. Seminar on Dynamical Systems 12:96–116, 1994.

P.Lochak and A.I.Neishtadt, *Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian*, Chaos 2, 1992.

Diffusion along phase space takes place basically along single resonances but multiple resonances play a key role in an explanation of the Arnold diffusion. To illustrate this we consider the map T_{δ} defined by the generating function

$$S(\psi_1, \psi_2, J_1, J_2) = \psi_1 \bar{J}_1 + \psi_2 \bar{J}_2 + \delta \mathcal{H}(\psi_1, \psi_2, \bar{J}_1, \bar{J}_2), \text{ where}$$
$$\mathcal{H}(\psi_1, \psi_2, \bar{J}_1, \bar{J}_2) = \frac{J_1^2}{2} + a_2 J_1 J_2 + a_3 \frac{J_2^2}{2} + \cos(\psi_1) + \epsilon \cos(\psi_2),$$

through the relations $J_i = \partial S / \partial \psi_i$, $\bar{\psi}_i = \partial S / \partial \bar{J}_i$, i = 1, 2:

$$T_{\delta}: \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ J_{1} \\ J_{2} \end{pmatrix} \mapsto \begin{pmatrix} \bar{\psi}_{1} \\ \bar{\psi}_{2} \\ \bar{J}_{1} \\ \bar{J}_{2} \end{pmatrix} = \begin{pmatrix} \psi_{1} + \delta(\bar{J}_{1} + a_{2}\bar{J}_{2}) \\ \psi_{2} + \delta(a_{2}\bar{J}_{1} + a_{3}\bar{J}_{2}) \\ J_{1} - \delta\sin(\psi_{1}) \\ J_{2} - \delta\epsilon\sin(\psi_{2}) \end{pmatrix}$$

 \mathcal{H} resembles to a "two-pendulum" Hamiltonian and T_{δ} is δ -close to the Id. Single resonance: NHIC \approx ric of a pendulum system \times saddle of the other Double resonance: $\approx (\psi_1, J_1)$ -pendulum $\times (\psi_2, J_2)$ -pendulum

Role of double resonances

 $\delta = \epsilon = a_2 = 0.5, a_3 = 1.25$. Lyap. exp. (megno): **black** \rightarrow chaotic, green \rightarrow weakly chaotic, white \rightarrow regular. Red: Iterates of the point (0, 0, 4.5, -5.25) in a slice of width 5×10^{-3} around $\psi_1 = \psi_2 = 0$ (left plot) and $\psi_1 = \psi_2 = \pi$ (right plot). Total number of iterates= 10^{12} .

Lochak approach steps

The role of maximum (*double* if d = 2) resonances is emphasized in the Lochak-Neishtadt approach to proof the Nekhoroshev estimates. The map F_{ϵ} is the isoenergetic Poincaré return map of a (d + 1)-dof analytic Hamiltonian

 $\hat{H}(\hat{I}, \hat{\psi}, \epsilon) = \hat{H}_0(\hat{I}) + \epsilon \hat{H}_1(I, \hat{\phi}, \epsilon), \text{ where}$ $\hat{I} = (I, I_3), \hat{\psi} = (\psi, \psi_3), \hat{w}(\hat{I}) = (w(I), 1), \text{ and } \hat{H}_0(\hat{I}) = \hat{\omega}(\hat{I}) \cdot \hat{I}.$

- 1. Construct a covering of the action space by open neighbourhoods of a finite number (depending on ϵ) of unperturbed tori bearing periodic motions (maximum resonances).
- 2. Normalize the Hamiltonian around a periodic orbit: by successive changes of variables (averaging procedure) the non-resonant terms of H can be annihilated within an exponentially small error \rightsquigarrow slow observable
- 3. Use convexity to guarantee exponential stability in the neighbourhood.

Indirect procedure: The evaluation of the local (in each domain of the covering) slow observable (to measure diffusion) requires a transformation to NF. p.7/36

"Our Lochak-like approach"

Note that, for a map $F_{\varepsilon} = F_0 + \mathcal{O}(\varepsilon)$, $F_0(I, \varphi) = (I, \varphi + \omega(I))$, if $n\omega(I_*) \in \mathbb{Z}^d$ for some $n \in \mathbb{N}$ and $I_* \in \mathbb{R}^d$ then $I = I_*$ is a torus invariant by F_0 foliated by invariant *n*-periodic orbits. Note that near I_* the map F_{ε}^n becomes close-to-the-identity.

Our proof of the Nekhoroshev theorem is based on a refinement of Neishtadt's averaging theorem of approximation of a close-to-Id map by an autonomous Hamiltonian flow with an exponential small error.

Our construction of an approximating vector field is based on the discrete averaging and interpolating vector fields (IVFs): it is explicit in terms of iterates of the map, can be easily implemented numerically and avoids changes of variables.

Next we study close-to-Id maps and IVFs. Later we will come back to the stability problem for near-integrable maps.

Close-to-identity maps and IVFs

Interpolating vector fields (IVFs)

Let $f: \mathcal{U} \mapsto \mathbb{R}^s$ real analytic on $\mathcal{U} \subset \mathbb{R}^s$ open domain. Let $m \ge 0$ and assume that there is $\mathcal{U}_0 \subset \mathcal{U}$ such that $f^k(\mathcal{U}_0) \subset \mathcal{U}$ for $0 \le k \le m$. Denote $x_k = f^k(x_0), x_0 \in \mathcal{U}_0$. There is a unique polynomial $P_m(t; x_0)$ of order min t such that $P_m(k; x_0) = x_k$ for $0 \le k \le m$.

Definition. The interpolating vector field (IVF) X_m at $x \in U_0$ is the velocity vector of the interpolating curve at t = 0, that is, $X_m(x_0) = \partial_t P_m(0, x_0)$.

1. $X_m(x_0) = \sum_{k=0}^m p_{mk} f^k(x_0)$ is a weighted average of the iterates with p_{m0} the Harmonic number and for k > 1

$$p_{mk} = (-1)^{k+1} \frac{m+1-k}{k(m+1)} \binom{m+1}{k}$$

2. Numerics: higher accuracy for symmetric interpolation nodes around x_0 . (i.e. we consider p_{2m} s.t. $x_k = p_{2m}(t_k; x_0, \epsilon), \ \forall t_k = \epsilon k, \ |k| \le m$.)

IVF-embedding a near-ld map into a flow

Consider a smooth one-parameter near-Id family of maps

$$f_{\epsilon}(x) = x + \epsilon \, G_{\epsilon}(x).$$

and interpolation nodes $t_k = \varepsilon k$.

- 1. X_m extends continuously to $\epsilon = 0$ and $X_m(x, 0) = G_0(x)$ the limit v.f.
- 2. f_{ϵ} is close to the time- ϵ flow of the IVF: ^a If $f_{\epsilon} \in C^{2m+1}$ and $\mathcal{U}_0 \subset \mathcal{U}$ compact, then the IVF X_{2m} is uniformly bounded in \mathcal{U}_0 for $|\epsilon| < \epsilon_0$ and

$$F_{\epsilon}(x) = \Phi_{X_{2m}}^{\epsilon}(x) + O(|\epsilon|^{2m+1}).$$

Remark. This result was obtained by relating IVF with the "suspension+averaging" procedure (not explicit!). If f_{ϵ} is analytic in a complex neighbourhood of \mathcal{U}_0 and we choose $m \sim \epsilon^{-1}$ then the we proved that the IVF interpolates f_{ϵ} with an exponentially small error.

^aV.Gelfreich and AV, *Interpolating vector fields for near identity maps and averaging*, Nonlinearity 31(9), 4263–4289, 2018

Example: Chirikov standard map on $\mathbb{S}^1 imes \mathbb{R}$

$$M_{\epsilon}: (x, y) \mapsto (\bar{x}, \bar{y}) = (x + \epsilon \bar{y}, y - \epsilon \sin(x)), \quad \epsilon \in \mathbb{R}.$$

 $\epsilon = 0.1$, same 200 i.c. Left: 10^3 iterates of M_{ϵ} . Right: RK78 integration of X_{10} up to $t = 10^3$ plotting every $\Delta t = 0.1$. No visual differences!

IVF-exponential embedding of a near-ld map

Let f an exact symplectic map ϵ -close-to-Id in $D = D_0 + \delta$ a complex δ -neighbourhood of $D_0 \subset \mathbb{R}^{2d}$. Assume it admits a generating function G(P,q) = Pq + S(P,q) such that S can be analytically continued onto D and denote by $\epsilon = \|\nabla S\|_D$. As before X_m is the IVF.

Theorem [GV23]. If $m = \left\lfloor \frac{\delta}{6e \epsilon} - d \right\rfloor \ge 1$, then

$$\|\Phi_{X_m} - f\|_{D_0} \le 3 e^{d+2} \epsilon \exp\left(-\delta/(6e \epsilon)\right).$$

Moreover there is a Hamiltonian interpolating vector field X_m such that

$$\|\hat{X}_m - X_m\|_{D_1} \le 3 e^{d+1} \epsilon \exp\left(-\delta/(6e \epsilon)\right),$$

where D_1 is the $\frac{\delta}{2}$ -neighbourhood of D_0 , and

$$\|\Phi_{\hat{X}_m} - f\|_{D_0} \le 5 e^{d+2\epsilon} \exp\left(-\delta/(6e\epsilon)\right).$$

We need to explicitly control of the constants in front of ϵ^m . Indeed, under the assumption of the theorem for every $1 \le m < \delta/(6\epsilon) - d$ the following inequalities hold: $\|X_m\|_{D_1} \le 2\epsilon$, $\|\hat{X}_m\|_{D_1} \le 4\epsilon$,

$$\|\Phi_{X_m} - f\|_{D_0} \le 3C_m^{m-1}\epsilon^m, \qquad \|\Phi_{\hat{X}_m} - f\|_{D_0} \le 5C_m^{m-1}\epsilon^m,$$
$$\|\hat{X}_m - X_m\|_{D_1} \le 8C_m^m\epsilon^{m+1}$$

where $C_m = 6(m+d)/\delta$. The exponential bound is obtained by choosing m to minimize the error bound: $m \approx \delta/6e\epsilon$.

Direct explicit proof! (sketch of ideas)

1. We embed f into a family of symplectic maps f_{μ} (homotopy):

$$G_{\mu}(P,q) = Pq + \mu S(P,q)$$

- 2. Choose $|\mu| < \delta/(2\epsilon(m+d))$ so that $x_j \in D, 0 \le j \le m$, for all $x_0 \in D_1$. This imply analyticity of $X_{m,\mu}$.
- 3. The proof of the first inequality reduces to bound the IVF $X_{m,\mu}$ of f_{μ} on D_1 . If $\xi = id$ and $T_f(g) = g \circ f$, one has $X_{m,\mu} = -\sum_{k=1}^m \frac{1}{k} (I T_{f_{\mu}})^k \xi$, and, since $\operatorname{val}_{\mu}((I T_{f_{\mu}})^k \xi) \ge k$, we use the MMP to bound $X_{m,\mu}$ (decreasing the analyticity strip in μ).
- 4. The IVF $X_{m,\mu}$ is not Hamiltonian but the m-jet in μ

$$\hat{X}_{m,\mu} = \sum_{k=1}^{m} \frac{1}{k!} \partial_{\mu}^{k} X_{m,\mu} \big|_{\mu=0} \mu^{k}$$

is a Hamiltonian vector field.

Obtaining Nekhoroshev estimates

Following Lochak-Neishtadt approach

We investigate iterates $(I_k, \varphi_k) = F_{\varepsilon}^k(I_0, \varphi_0)$ of an arbitrary initial condition. If $n \, \omega(I_*) \in \mathbb{Z}^d$ for some $n \in \mathbb{N}$ and $I_* \in d$, then the equation $I = I_*$ defines a torus filled with periodic orbits of the integrable map F_0 . In a neighbourhood of $I = I_*$ we consider the lift of F_{ε}^n given by

$$f_{\varepsilon}^n : (I_0, \varphi_0) \mapsto (I_n, \varphi_n - n\omega(I_*)).$$

Trajectories of F_{ε}^{n} and f_{ε}^{n} coincide when angles are considered modulo one. Concretely, we study iterates of f_{ε}^{n} in $\mathcal{D}_{0}(I_{*}) = B(I_{*}, \rho_{n}) \times \mathbb{R}^{d}$, where

$$\rho_n = \rho_{\varepsilon}/n, \quad \rho_{\varepsilon} = \gamma N_{\varepsilon}^{-1/d} = \gamma \varepsilon^{1/2(d+1)}, \quad N_{\varepsilon} = \varepsilon^{-d/2(d+1)}.$$

The constant γ is independent of n and ε . If γ is sufficiently large these domains completely cover the domain of the map F_{ε} provided we consider all fully resonant tori with $n < N_{\varepsilon}$. This is a consequence of Dirichlet theorem on simultaneous approximation and convexity of $h'_0(I) = \omega(I)$.

Covering: frequency space

Dirichlet theorem: For any $\omega \in \mathbb{R}^d$ and any N > 1 there is a vector $\omega_* \in \mathbb{Q}^d$ and $n \in \mathbb{N}$ such that $1 \leq n < N$, $n\omega_* \in \mathbb{Z}^d$ and $|\omega - \omega_*| < \frac{1}{nN^{1/d}}$.

 \Rightarrow the balls $B(k/n, n^{-1}N^{-1/d})$ with $k \in \mathbb{Z}^d$ and $1 \le n < N$ cover the whole frequency space \mathbb{R}^d .

Left: Resonant lines up to order 10. Center: We consider n up to N = 6 and we plot a circle of radius $\frac{1}{n\sqrt{N}}$ around. Right: Same for N = 10. As $\epsilon \searrow 0$ larger N is needed. But to cover the resonances (1,0) and (0,1) we need periods $\ll N$.

Interpolation near a fully resonant torus

$$\begin{split} &\ln \mathcal{D}(I_*) = \left\{ \left(I, \varphi \right) \in \mathbb{C}^{2d} : |I - I_*| < 2\rho_n, |\operatorname{Im}(\varphi)| < r/2 \right\}, \text{a} \\ & \text{complex neighbourhood of } \mathcal{D}_0(I_*), \text{ we introduce the scaled action} \\ & I = I_* + \rho_n J \text{ so that the lift } f_{\varepsilon}^n \text{ can be written as} \end{split}$$

$$\hat{f}_{\varepsilon}^{n}: \begin{cases} \bar{J} = J + \rho_{n}^{-1} \varepsilon \sum_{k=0}^{n-1} a(I_{k}, \varphi_{k}), \\ \bar{\varphi} = \varphi + \sum_{k=0}^{n-1} (\omega(I_{k}) - \omega(I_{*})) + \varepsilon \sum_{k=0}^{n-1} b(I_{k}, \varphi_{k}), \end{cases}$$

which is ϵ_n -close-to-ld in $\mathcal{D}(I_*)$, with

$$\epsilon_n \leq \max\left\{C_1\rho_n^{-1}n\varepsilon, C_2n\rho_n\right\} \leq C_3\varepsilon^{1/2(d+1)}$$

By the interpolation theorem: there is $m = m(\epsilon) \sim \epsilon_n^{-1}$ such that the time-one map of the Hamiltonian vector field \hat{X}_m verifies

$$\left\| \hat{f}_{\varepsilon}^{n} - \Phi_{\hat{X}_{m}} \right\|_{B(0,1) \times \mathbb{R}^{d}} \leq 5 \mathrm{e}^{d+2} \exp\left(-\gamma_{0} \varepsilon^{-1/2(d+1)}\right).$$

p.19/36

Long term stability of actions (key points)

The Hamiltonian H_m corresponding to \hat{X}_m is used to bound the actions.

1. Since $\hat{f}_{\varepsilon}^{n}$ is exact symplectic it derives from a generating function S_{n} . One has $S_{n}(\bar{J}, \varphi) = S_{n}^{L}(\bar{J}, \varphi) + w_{n}(\bar{J}, \varphi)$, where

$$S_n^L(\bar{J},\varphi) = n\rho_n^{-1} \left(h_0(I_* + \rho_n \bar{J}) - h_0(I_*) - \rho_n \langle h_0'(I_*), \bar{J} \rangle \right)$$

If γ is large enough then $||w_n|| \leq \nu \rho_{\epsilon}/9$ where $\nu = \text{convexity constant of } h_0$. Relating H_m with S_n^L one can use convexity of h_0 , and adapt Lochak-Neishtadt reasoning for flows to this setting.

2. The energy change by iterate of \hat{f}_{ε}^n is exponentially small

$$\begin{aligned} \left\| H_m \circ \hat{f}_{\varepsilon}^n - H_m \right\| &= \left\| H_m \circ \hat{f}_{\varepsilon}^n - H_m \circ \Phi_{\hat{X}_m} \right\| \leq \left\| H'_m \right\| \left\| \hat{f}_{\varepsilon}^n - \Phi_{\hat{X}_m} \right\| \\ &= \left\| \hat{X}_m \right\| \left\| \hat{f}_{\varepsilon}^n - \Phi_{\hat{X}_m} \right\| \leq 20\epsilon_n \mathrm{e}^{d+2} \exp\left(-\gamma_0 \varepsilon^{-1/2(d+1)} \right). \end{aligned}$$

 $\rightarrow \text{If } |I_0 - I_*| \leq \sqrt{\nu} \rho_n / 6 ||w'||, \text{ then } |I_{kn} - I_*| \leq \rho_n \text{ for } 0 \leq kn \leq T_{\text{Nek}},$ where $T_{\text{Nek}} \geq \frac{n\nu}{240\epsilon_n e^{d+2}} \exp\left(\gamma_0 \varepsilon^{-1/2(d+1)}\right) \Longrightarrow \text{Nekhoroshev estimates}.$

Exploring diffusion

Consider F_{ε} near-integrable 4D map, then:

- 1. Near a double resonance: Closer to a tori bearing periodic orbits of short period n, the distance-to-Id of the lift f_{ε}^{n} of the near-integrable map F_{ε}^{n} becomes smaller. Hence, h_{m}^{N} is well-preserved for a much larger number of iterates. This prevents orbits from getting close to or escaping from a small neighbourhood of the double resonance in a moderate number of iterates.
- 2. Single resonances: For double resonances of different enough order, hence with large n, h_m^n is badly preserved since f_{ε}^n is far-from-Id. This is responsible of the fast drift along single resonances typically observed.

Computation of an adiabatic invariant

Numerically we do not compute the Hamiltonian from \hat{X}_m . Instead we directly compute an adiabatic invariant h_m s.t. $J \nabla h_m \approx X_m = (X_m^i)_{i=1,...,2d}$ as follows. Consider a near-Id map f_ϵ such that $f_\epsilon^*(\omega) = \omega$ where $\omega = \sum_{i=1}^d dx_i \wedge dx_{i+d}$ standard symplectic form. Let $\nu_m = \omega(X_m, \cdot) = \sum_{1 \le i \le d} \left(X_m^i dx_{i+d} - X_m^{i+d} dx_i \right)$. Given $p_0 \in D_0$ define for every $x \in D_0$

$$h_m^{\epsilon}(x;p_0) = \int_{\gamma(p_0,x)} \nu_m$$
, along a path $\gamma(p_0,x)$ from p_0 to x .

Lemma[GV23]. If f_{ϵ} is defined on $\mathbb{T}^2 \times \mathbb{R}^2$ and h_m is computed along a piecewise path with straight segments parallel to the (ordered) axes, then there is a constant c_1 and a periodic function c_2 s.t.

$$\tilde{h}_m^{\epsilon}(x;p_0) = h_m^{\epsilon}(x;p_0) - c_1(x^0 - p_0^0) - c_2(x^0)(x_1 - p_0^1),$$

is globally well-defined on $\mathbb{T}^2 \times \mathbb{R}^2$.

Correction of h_m to be periodic

Lemma [GV18]. For any compact $\tilde{D}_0 \subset D_0$ and $\forall x \in \tilde{D}_0$, one has $h_m(f_{\epsilon}(x), \epsilon) - h_m(x, \epsilon) = O(\epsilon^m)$,

i.e. h_m is approximately preserved for ϵ^{-m} iterates.

Remark: \tilde{h}_m is an exponentially small in ϵ correction of h_m :

We consider T_{δ} for $\delta = 0.2$.

Left: h_{20} and h_{20} of points $(\psi_1, \psi_2, 0, 0)$ with base point $p_0 = (\pi, \pi, 0, 0)$. Right: Their difference.

Remark: The behaviour is independent of the choice of p_0 .

IVFs- "Poincaré" sections to visualize dynamics

Let $g: \mathbb{R}^m \to \mathbb{R}$ smooth s.t. $\Sigma = \{x \in \mathbb{R}^m : g(x) = 0\}$ is a smooth hyper-surface of codimension one. Take $x_0 \in D_0$ and iterate $x_{k+1} = f_{\epsilon}(x_k)$. Assume that $g(x_k)g(x_{k+1}) \leq 0$ (crossing). If the limit vector field G_0 is (locally) transversal to Σ then, for ϵ small enough, there is a unique $t_k \in [0, \epsilon]$ such that $g(\Phi_{X_k}^{t_k}(x_k)) = 0$. \longrightarrow Plot $y_k = \Phi_{X_n}^{t_k}(x_k)$ instead of (any other projection of) x_k .

Visualizing 4D near-Id dynamics: For a map like T_{δ} , obtained as a discretization of $H = J_1^2/2 + a_2J_1J_2 + a_3J_2^2/2 + V(\psi), \Sigma = \{\psi_1 = \psi_2\}$ is a transversal section (if $|\delta|$ small enough). On a moderate time scale the iterates of $x_0 \in \mathbb{T}^2 \times \mathbb{R}^2$ remain close to the "energy" surface $M_{E}^{m} = \{x : h_{m}(x, p_{0}) = E\}$, where $E = h_{m}(x_{0}, p_{0})$. At each crossing, we project onto Σ along the IVF X_n to get $y_{k_i} \in \Sigma$. For E large enough, one has $M_E^n \cong \mathbb{T}^3$. Then $\psi = \psi_1 = \psi_2$, $\phi = \arg(J_1 + iJ_2)$ are convenient coordinates on $\Sigma \cap M_E^n \cong \mathbb{T}^2$.

p.25/36

$T_{\delta}, \delta = 0.35, 400 \text{ i.c. on } \Sigma \cap \{h_{10} = 4\}, 500 \text{ it}$

p.26/36

Turning at a resonant crossing

 $T_{\delta}, \delta = 0.4$. Left: IC (3, 3, 2.136447, -3.904401) near $J_1 + a_2 J_2 \approx 0$. We perform around 10^8 (resp. 10^{10}) iterates and show in blue (resp. red) iterates on $\Sigma = \{\psi_1 = \psi_2\}$ with $|\psi_1 - \pi| < 0.35$. Similar for most orbits. Right: Energy levels (s1 and s2 above the level of the crossing observed).

"Poincaré" sections & last "RIC"

J_1	$ ilde{h}^1_{11}$	tori?
2.5	12.327	Y <mark>s1</mark>
2.0	7.889	Υ
1.75	6.041	Y <mark>s2</mark>
1.625	5.209	Ν
1.5	4.439	N <mark>s3</mark>

Approaching the HH-point (with h = 0) of the double resonance the projection "Poincaré" maps become more chaotic. The last "rotational invariant curve" is at $h \approx$ $h(\pi, \pi, J_1, -a_2J_1) \approx 5.209$. It corresponds to $J_1 \approx 1.625$. Numerical simulations detect passages for $1.37 \leq J_1 \leq 1.5$.

Diffusion around double resonances

Different patterns depending on the different time-scales (i.e. depending on ϵ ,

the order of the resonance n and the structure of f_{ε}^{n}):

Reflection

Inside red circle: $h_m^n \sim \text{ctant}$ longer time-scale

Inside blue circle: h_m^n evolves on a medium time-scale

Turning shorter angle

Turning around (single resonance)

Different crossings

We use a 4D map with a potential $V(\psi) = \frac{\cos(\psi_1) + \epsilon \cos(\psi_2)}{3(\cos(\psi_1) + \epsilon \cos(\psi_2) + 3)}$, hence with all harmonics, an look at different resonances. Illustrations for $\delta = 0.2$.

From left to right, "Poincaré" sections using $h^{n=1}$ and J = 1.6, 0.8, 0.4.

Different crossings

From left to right, "Poincaré" sections using $h^{n=2}$ (res 1:2, J = 8.4) and $h^{n=5}$ (res 2:5, J = 6.6) Movie

IVFs - quantitative information on diffusion

Local diffusive properties: oscillations of h_m along a single resonance.

Final comments and conclusions

IVF - other settings: near-conservative dynamics

Example: Dissipative standard map^a

$$M_{\epsilon,\delta}: (x,y) \mapsto (\bar{x},\bar{y}) = (x+\delta\bar{y},(1-\epsilon)y-\delta\sin(2\pi x)+c), \quad \epsilon \in \mathbb{R}.$$

We consider $\delta \approx 3.57 \times 10^{-1}$, $\omega \approx 6.18 \times 10^{-1}$ and $\epsilon = 10^{-2}$ (left), 10^{-3} (center/right).

The origin is an attracting focus. Preliminary numerical exploration indicate that the probability of capture by the focus can be defined as the ratio between the entrance/exit strips (one can avoid homoclinics).

^aOngoing work with R.Calleja

IVF - other settings: discrete Lorenz attractors

Lorenz map: $\bar{x} = x + \delta(\sigma(y - x)), \ \bar{y} = y + \delta(\bar{x}(\rho - z) - y), \ \bar{z} = z + \delta(\bar{x}y - 8z/3).$

For δ small, we use IVF to compute kneading diagram, (ρ, σ) -parameter space (top right $\delta = 0.001$, top left $\delta = 0.06$), reduce dynamics to 1D-"Poincaré maps" (bottom left, $\delta = 0.001$), and compute the region with pseudohyperbolic discrete Lorenz-like attractors (bottom right, $\delta = 0.01$).

^aA.Kazakov, A.Murillo, AV, K.Zaichikov, "Numerical study of discrete Lorenz-like attractors." Submitted to RCD.

Conclusions & future work

• IVFs – a numerical tool to study near-Id dynamics:

We have used IVFs to investigate the key role of double resonances in the diffusion process. They allow to compute the slowest variable h_m at any point of the phase (useful for visualizations/quantitative simulations of diffusion) from simulations in original system variables.

• IVFs – analytical tool to study near-Id dynamics:

The relation of IVFs with discrete averaging allow to obtain optimal and explicit theoretical results: exponential embedding of a symplectic near-Id map into a Hamiltonian flow and Nekhoroshev estimates for near-integrable maps.

- What's next? Many Arnold diffusion questions...
 - Determine ε -ranges for which the different regimes near a double resonance are observed. "last invariant torus"?
 - The stochastic limit needs to be clarified, and convergence to a local Gaussian process justified. Role of high order resonances?
 - Can we construct the "effective graph" of diffusion for a given IC (and for a given simulation time)? This require to adapt covering to the IC.

Thanks for your attention!!