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Geometric group theory

Devoted to the study of the algebraic properties of finitely ge-

nerated groups via the geometric and topological properties of

the spaces on which such groups act.

Often, finitely generated groups G themselves are considered as

geometric objects, after endowing them with a metric (usually,

the word metric).



Presentations

A presentation 〈X|R〉 for a finitely generated group G is a set X
of generators and a set R of relations (words equivalent to the
identity element of G).

Example: 〈a, b | abā̄b〉 Classical presentation for the fundamental
group of a torus (genus g = 1, rank 2g = 2).



Presentations

Example: 〈a, b, c, d | abā̄bcdc̄d̄〉 Classical presentation for the fun-

damental group of a double torus (genus g = 2, rank 2g = 4).

〈a, b, c, d, e | acded̄̄b, ēc̄bā〉 An exotic presentation for the same group.



Presentations

〈a, b | a2b2〉
〈a, b | abāb〉 Classical presentations for the fundamental group of
a Klein bottle (nonorientable surface of rank 2).

〈a, b, c | a2b2c2〉 Classical presentation for the fundamental group
of the nonorientable surface of rank 3.

〈a, b, c, d | acdb, cad̄b〉 An exotic presentation for the same group.



Word metric

Given a presentation P = 〈X|R〉 of G and x ∈ G, we define

lengthP (x) as the number of symbols of a minimal word in the

alphabet X ∪ X̄ representing x.

Example: P = 〈a, b, c, d | acdb, cad̄b〉

x = acdcad = accadd = acbd = accadc̄ā̄b

lengthP (x) = 4



A curiosity

For the presentation

P = 〈a, b, c, d, p, q, r, t, k | p10a = ap, p10b = bp, p10c = cp,

p10d = dp, p10e = ep, aq10 = qa, bq10 = qb, cq10 = qc,

dq10 = qd, eq10 = qe, pacqr = rpcaq, p2adq2r = rp2daq2,

p3bcq3r = rp3cbq3, p4bdq4r = rp4dbq4, p5ceq5r = rp5ecaq5,

p6deq6r = rp6edbq6, p7cdcq7r = rp7cdceq7, p8ca3q8r = rp8a3q8,

p9da3q9r = rp9a3q9, ā3ta3k = kā3ta3, ra = ar, rb = br, rc = cr,
rd = dr, re = er, pt = tp, qt = tq〉

the problem of determining whether two words represent the sa-

me element of the group (word decision problem) is unsolvable.



Cayley graph of (a presentation of) G

It is a directed combinatorial graph, whose vertices are identified

with the elements of G. Given any vertex g and any generator

a, there is an edge labeled as a going from g to ga, and an edge

also labeled as a going from gā to g.

ga

ga

ag

ā

It’s a regular graph since all vertices have the same degree, 2|X|.

G acts on the Cayley graph by right product: words = paths.



Cayley graph of (a presentation of) G

〈a, b | abā̄b〉 Classical presentation for the fundamental group of a

torus

Id a

b ba

babaaba

ā

bā

bbba

b̄a

a

b̄



Cayley graph of (a presentation of) G

〈a, b, c | a2b2c2〉 Classical presentation, nonorientable surface of

rank 3

Id

aabbcc



Cayley graph of (a presentation of) G

〈a, b, c, d | abā̄bcdc̄d̄〉 Classical presentation for the fundamental group
of a double torus



Volume entropy

Let G be a finitely generated group and let P = 〈X |R〉 be a
presentation of G.

σm := Card{g ∈ G : lengthP(g) = m},

is the number of vertices at distance m from the identity in the
Cayley graph.

Its exponential growth rate is called the volume entropy, defined
as

hvol(G,P ) = lim
m→∞

1

m
log(σm).

It is not a group invariant: it depends on the presentation.



Volume entropy

An example: the free group G = 〈a1, a2, . . . , aN | ∅〉 of rank N .

m = 1 : a, b, ā, b̄ −→ σ1 = 4
m = 2 : aa, ab, āb, ba, bb, bā, āb, āā, ā̄b, b̄a, b̄ā, b̄̄b −→ σ2 = 12

...

...

σm = 2N(2N − 1)m−1

hvol(G,P ) = lim
m→∞

1

m
log(σm) = log(2N − 1)



The context

We will consider geometric presentations of fundamental groups

of (orientable and non-orientable) surfaces of rank N ≥ 3. Equi-

valently, of negative Euler characteristic. Equivalently (for ori-

entable surfaces), of genus g ≥ 2.

A presentation is called geometric if the associated Cayley

graph is planar.

All previously shown presentations were geometric.

〈a, b, c, d | d̄acdb, cd̄ad̄b〉 a non-geometric presentation for the dou-

ble torus group.



The context: hyperbolicity

We note that the considered surfaces (rank N ≥ 3) are hyper-

bolic in the geometrical sense: they can be endowed with a

hyperbolic metric (each point has an open neighbour isometric

to the hyperbolic plane).

The corresponding fundamental groups are hyperbolic in the

geometric group theory sense [Gromov, 1980]: for the associa-

ted Cayley graph, there is a constant δ such that every geodesic

triangle is δ-thin.

The family of all hyperbolic groups has some nice properties.

For instance, the word decision problem is solvable.



Geometric presentations

Lemma 1. Let P = 〈X|R〉 = 〈x1, x2, . . . , xN |R1, R2, . . . , Rk〉 be

a geometric presentation of a surface group G. Then,

(a) The set {x±1
1 , . . . , x±1

N } admits a cyclic ordering that is pre-

served by the G-action.

(b) Each generator appears exactly twice (with plus or minus

exponent) in the set R of relations.

(c) Let a, b be a pair of adjacent generators according to the

cyclic ordering given by (a). Then, there is exactly one

relation Ri such that a cyclic shift of Ri contains either b−1a

or a−1b as a sub-word.



Lemma 1(a)

The set {x±1
1 , . . . , x±1

N } admits a cyclic ordering that is preserved

by the G-action.

Id

aabbcc

ccbb

a

a
cc

P = 〈a, b, c | a2b2c2〉

Cyclic ordering:

(a, ā, b, b̄, c, c̄)

a



Geometricity test

Lemma 1 can be used to construct an algorithm that takes as

input a presentation P and tests whether P is geometric.

P1 = 〈a, b, c, d | adac, cbdb〉

P2 = 〈a, b, c, d, e | abc, ceā, bc̄d2〉

P3 = 〈a, b, c, d | abābd, c2d〉

P2 is not geometric since it does not satisfy Lemma 1(b).

P1, P3 satisfy Lemma 1 (b), but P1 does not satisfy (a):



Geometricity test

P1 = 〈a, b, c, d | adac, cbdb〉

da

c

aR

1

bdbcR

2

1

4 2

3

adacbdbcbdacaR

1

R̄2

R2

R̄1

The circles numbered by i indicate the angles used to attach the

cell at step i of the algorithm. After 3 steps we cannot continue.



Geometricity test

P3 = 〈a, b, c, d | abābd, c2d〉

ababdcdc

c

dcabababdbaadbad

Round of 8 steps completed: P3 is a geometric presentation.

Obtained cyclic ordering: (a, d̄, c, c̄, d, b, ā, b̄).



Main goal

Construct an algorithm that takes as input a presentation P

of a surface group, checks whether P is geometric and, in the

affirmative, computes the associated volume entropy.

In the literature, the explicit computation of the volume entropy

exists only for a particular case: the classical presentations.

Let us see this “straightforward” computation for the nonorien-

table surface group of rank 3 (just to be aware of the difficulty

of the problem for an arbitrary geometric presentation).



Classical presentation P = 〈a, b, c | a2b2c2〉

hvol(G,P ) = limm→∞ 1
m log(σm) where σm is the number of ver-

tices at distance m from Id in the Cayley graph.

Id

aabbcc

ccbb

a

a
cc



Computation

Forget about the labels and the orientations of the edges, since
σm depends only on the shape of the Cayley graph.

Note that every vertex belongs to 6 hexagons.

Note that, given an hexagon H, there is exactly one vertex in
H at minimum distance from Id. We call it the base vertex
of H and we say that the type of v inside H is 0, denoted as
t(v,H) = 0.

Now, we say that a vertex v inside H has type i, denoted as
t(v,H) = i, if v is a successor of a vertex of H of type i− 1.

It is clear that any hexagon H contains a vertex of type 0, 2
vertices of type 1, 2 vertices of type 2 and 1 vertex of type 3.



Computation

Id

vH

1

H2

H3

t(v,H1) = 2

t(v,H2) = 0

t(v,H3) = 1



Computation

Now we classify all vertices (different from Id) in three families:

F1: they are base points of 4 hexagons and have type 1 with

respect the other 2 hexagons

F2: they are base points of 4 hexagons and have type 1 and 2

with respect the other 2 hexagons

F3: they are base points of 3 hexagons and have type 1, 1 and

3 with respect the other 3 hexagons



Computation

Id

F1

F2

F2

F1

F1

F1

F2

F2

F2

F1

F1

F1

F3

F2

F1
F1



Computation

• Each v ∈ F1 has 3 successors in F1 and 2 successors in F2

• Each v ∈ F2 has 3 successors in F1, 1 successor in F2 and 1

successor in F3

• Each v ∈ F3 has 2 successors in F1 and 2 successors in F2

Let vim be the number of vertices in Fi at distance m from Id.
v1
m+1

v2
m+1

v3
m+1

 =

 3 3 2
2 1 2
0 1/2 0


 v1

m
v2
m
v3
m

 = A

 v1
m
v2
m
v3
m





Computation

Note that σm = v1
m + v2

m + v3
m = ||(v1

m, v
2
m, v

3
m)||1.

By Gelfand’s formula,

ρ(A) = lim
m→∞ ||A

m||1/m
1

So, the volume entropy can be computed as log(ρ(A)).

The characteristic polynomial of A is λ3 − 4λ2 − 4λ + 1, with
largest real root ρ(A) = 4.791287847. So,

hvol(G,P ) = log(4.791287847)



Computation for an arbitrary geometric presentation

In no way the previous straightforward computation can be ex-
tended to a presentation as P3 = 〈a, b, c, d | abābd, c2d〉

ababdcdc

c

dcabababdbaadbad

In particular, the previous computation was possible since the
Cayley graph of the classical presentation was bipartite (all cycles
of even length).



The result

We have solved the problem of computing algorithmically the

volume entropy of any geometric presentation of a surface group

of rank N ≥ 3 (hyperbolic groups).

Ll. Alsedà, D. Juher, J. Los, F. Mañosas, Entropy stability and

Milnor-Thurston invariants for Bowen-Series-like maps, preprint

(2023).

The program is written in Maple and Maxima and is freely avai-

lable to the scientific community.

The problem (posed by J. Los) comes from Geometric Group

Theory and has been solved using Dynamical Systems tools.



Minimal bigons

If we complete the cells adjacent to Id up to the closest vertices
for which there is geodesic ambiguity, we get what we call the
minimal bigons. It turns out that this is all we need to compute
the volume entropy. P3 = 〈a, b, c, d | abābd, c2d〉

ababdcdc

c

dcabababdbaadbad

abbdc

c

daabadbadba

dbabcdbabadcdabaabdabdabccb

ab

c

β (̄b, a)

β(a, d̄)



Boundary ∂G of a hyperbolic group G [Gromov, 1980]

A geodesic ray is an infinite word in the alphabet X ∪ X̄ such

that any finite subword is geodesic. Equivalently, an infinite

unbounded path in the Cayley graph starting at Id such that

every subsegment is geodesic.

The boundary ∂G of G is a topological, metric space. Any

point in the boundary is an equivalence class of geodesic rays

that remain at a uniform bounded distance from each others.

In our context, ∂G = S1.



Cylinders

The cylinder Cx for a generator x ∈ X∪X̄ is the subset of points
ζ ∈ ∂G such that there exists a ray (infinite word) W converging
to ζ and starting with x.

Lemma 2. The cylinders satisfy:

(a) Cx is connected and Cx ∩ Cy 6= ∅ if and only if x and y are
adjacent generators in the cyclic ordering. In this case it is
an interval.

(b) For any θ ∈ Cx ∩ Cy, there is an infinite word W such that
θ ∈ ∂G has two geodesic ray expressions LxW and LyW ,
where {Lx, Ly} are the two geodesic segments of the minimal
bigon β(x, y).



Cylinders

abbdba

dbabccb

Cb̄ ∩ Ca Ca ∩ Cd̄

Id

∈ Cb̄ \ Ca

Ca



Notation

The elements of X ∪ X̄ will be denoted by x1, x2, . . . , x2N , where

the indices are defined modulo 2N , in such a way that xj is

adjacent to xj±1 in the cyclic ordering given by Lemma 1(a).

x1

x2

xN

xN+1

xN+2

x2N



Cutting points

By Lemma 2(b) there are 2N disjoint intervals

Jj := Cxj−1 ∩ Cxj ⊂ S1.

For each Θ := (θ1, θ2, . . . , θ2N) ∈ J1 × J2 × . . .× J2N we consider

the finite partition of S1 given by the intervals

Ij := [θj, θj+1) ⊂ S1.

The points θj are called cutting points and Θ is called the

cutting parameter.



Cutting points

abbdba

dbabccb

θd̄

θa

Ia

Cb̄ ∩ Ca Ca ∩ Cd̄

Id



Cutting points and codings

When choosing a particular Θ = (θ1, θ2, . . . , θ2N), we are fixing
the coding of any point z ∈ S1 as an infinite word in the alphabet
X ∪ X̄.

abbdba

dbabccb

θd̄

Ia

Cb̄ ∩ Ca Ca ∩ Cd̄

Id

θa

z = ab̄c̄ · · ·



Cutting points and codings

When choosing a particular Θ = (θ1, θ2, . . . , θ2N), we are fixing
the coding of any point z ∈ S1 as an infinite word in the alphabet
X ∪ X̄.

abbdba

dbabccb

θd̄

θa

Ia

Cb̄ ∩ Ca Ca ∩ Cd̄

Id

z =̄ bāc · · ·



Bowen-Series-like maps

For each cutting parameter Θ := (θ1, θ2, . . . , θ2N) we consider

the map

ΦΘ : S1 −→ S1 such that ΦΘ(z) = x−1
j (z) if z ∈ Ij.

Such a map is called a Bowen-Series-like map.

From the combinatorial point of view (points = infinite words),

we are simply deleting the first symbol: ΦΘ(xjabcd · · · ) = abcd · · ·
So, ΦΘ is nothing but the standard shift map.

Parameter Θ ⇔ Partition S1 =
⋃2N
j=1 Ij

⇔ Fixed word for each z ∈ S1 ⇔ Shift map ΦΘ



Bowen-Series-like maps

We have thus a family of maps ΦΘ indexed by Θ = (θ1, θ2, . . . , θ2N),

the cutting parameter.

Properties:

1. ΦΘ

∣∣∣
Ij

is a homeomorphism onto its image.

2. At the cutting points the map is not continuous.

ΦΘ is, thus, a piecewise homeomorphism of ∂G = S1.



a d̄ c c̄ d b ā b̄a

d̄c

c̄db

ā

b̄a

d̄c

c̄db

ā

b̄

abbdc

c

daabadbadba

dbabcdbabadcdabaabdabdabccb

a

c

θa
θd̄

Ia



Topological entropy

Defined for continuous (Adler, Konheim, McAndrew) and dis-
continuous (Bowen) self-maps maps of compact spaces. For
piecewise continuous piecewise monotone maps Φ: S1 −→ S1 of
the circle, it can be defined as follows (Misiurewicz, Ziemian).

Let S1 =
⋃2N
j=1 Ij be a partition of S1 by intervals such that Φ

restricted to each Ij is a homeomorphism.

For m ∈ N, the itinerary intervals of level m are defined as

Ij0,j1,...,jm−1
:= Ij0 ∩Φ−1(Ij1) ∩ . . . ∩Φ−(m−1)(Ijm−1

)

Xm := number of non-empty intervals Ij0,j1,...,jm−1
of level m.

htop(Φ) = lim
m→∞

1

m
log(Xm)



The main theorem

hvol(G,P ) = lim
m→∞

1

m
log(σm)

htop(ΦΘ) = lim
m→∞

1

m
log(Xm)

Proposition 3. The following inequalities are satisfied for each
parameter Θ:

σm ≤ Xm ≤ mσm.

Main Theorem. Let G be a surface group of rank larger than
2 and let P be any geometric presentation of G. Then, for any
cutting parameter Θ, htop(ΦΘ) = hvol(G,P )= log(λ), where 1/λ
is the smallest root in (0,1) of an integer polynomial QP (t) that
can be explicitly computed from P .



Comments

The entropy stability property inside the family of Bowen-Series-

like maps ΦΘ is remarkable, since the dynamics of two different

maps in the family are quite different, in particular they are not

pairwise topologically conjugate or even semi-conjugate. For

some choices of the parameters Θ the map ΦΘ is Markov, unlike

for other choices.

The theorem states that the volume entropy of the group pre-

sentation P can be computed as the inverse of a real root of an

integer polynomial that can be algorithmically obtained from

P , by using the Milnor-Thurston theory of kneading invariants.



Milnor-Thurston kneading invariants

The theory was originally stated for continuous piecewise mo-

notone maps f of the interval. It states that the entropy of f

can be computed knowing the itineraries of the turning points

(points separating maximal intervals of monotonicity of f).

I can be adapted (Alsedà, Mañosas) to our context (piecewi-

se continuous, piecewise monotone maps ΦΘ of the circle) by

considering the interval map Φ̂Θ : [0,1] −→ [0,1] defined as

Φ̂Θ(x) = Φ̃Θ(x)− E(Φ̃Θ(x)),

where Φ̃Θ is the lifting of ΦΘ and E(y) is the integer part of y.

It is necessary to consider the discontinuity points as turning

points.



a d̄ c c̄ d b ā b̄a

d̄c

c̄db

ā

b̄a

d̄c

c̄db

ā

b̄

a d̄ c c̄ Id b ā b̄a

d̄c

c̄db

ā

b̄

ΦΘ

̂
ΦΘ(x) = Φ̃Θ(x)− E (̃ΦΘ(x))

I
r

d̄

I
ld

I
rd

θd
θb

md



Milnor-Thurston kneading invariants

Set of turning points:

θa<ma<θd̄<md̄<θc<mc<θc̄<mc̄<θd<md<θb<θā<θb̄<mb̄.

The number and ordering of the intervals in the partition is

independent of the particular choice of the cutting points θxi.

Now we must find the dynamical itinerary of each turning point

from the left and from the right. So, now we need to precise

the map ΘΦ. In other words, we need to choose the cutting

points Θ = (θ1, θ2, . . . , θ2N). Recall that any choice leads to the

same entropy! So, we are free.



Milnor-Thurston kneading invariants

The cutting points θi have geodesic ambiguity

θi = L · · · = R · · ·

up to the top vertex v of the bigon β(xi−1, xi) = {L,R}.

Choice: we choose the cutting point θi in such a way that there

is no geodesic ambiguity from v:

θi = LW = RW

for a unique infinite word W . Equivalently, the word W corres-

ponds to a point that does not belong to the intersection of

cylinders. In particular, is not a cutting point.



Milnor-Thurston kneading invariants

abbdccdaabadbadba

dbabcdbabadcdabaabdabdabccb

θd̄

cbdbcdbb

θd̄(+) ∈ I
l
d̄
, Φ(θd̄)(+) ∈ Ib, Φ2(θd̄)(+) ∈ Ib, Φ3(θd̄)(+) ∈ Ira.

θd̄(−) ∈ I
r
a, Φ(θd̄)(−) ∈ Ib, Φ2(θd̄)(−) ∈ Ild̄,Φ

3(θd̄)(−) ∈ Ib



Milnor-Thurston kneading invariants

θd̄(+) ∈ I
l
d̄
, Φ(θd̄)(+) ∈ Ib, Φ2(θd̄)(+) ∈ Ib, Φ3(θd̄)(+) ∈ Ira.

θd̄(−) ∈ I
r
a, Φ(θd̄)(−) ∈ Ib, Φ2(θd̄)(−) ∈ Ild̄,Φ

3(θd̄)(−) ∈ Ib

Now we consider the formal symbols

ω0(θ+
d̄

) = Ild̄, ω1(θ+
d̄

) = Ib, ω2(θ+
d̄

) = −Ib, ω3(θ+
d̄

) = Ira,

ω0(θ−
d̄

) = Ira, ω1(θ−
d̄

) = Ib, ω2(θ−
d̄

) = −Ild̄, ω3(θ−
d̄

) = −Ib,

where the signs +/− correspond to the increasing/decreasing

character of the corresponding iterate of the map.



Milnor-Thurston kneading invariants

Finally we construct the jump series for θd̄, a formal power

series in the alphabet of the intervals {Ila, Ira, . . .}:

νj(θd̄) = Ωvj(t) =
∞∑
i=0

(
ωi(θ

+
d̄

)− ωi(θ−d̄ )
)
ti.

By the choice of the cutting point θd̄, the jump series vanishes

beyond the length of the minimal bigon. So, it reduces to a

polynomial:

νθd(t) = (Ild̄ − I
r
a) + (−Ib + Ild̄)t

2 + (Ira + Ib)t
3



Milnor-Thurston kneading invariants

List of kneading invariants (Ix, Ilx, I
r
x replaced by x, xl, xr):

νθa(t) = (al − b̄r) + (̄bl + ā)t+ (−c̄r + cr)t2

νma(t) = (ar − al) + tνθa(t)

νθd̄(t) = (d̄l − ar) + (−b+ d̄l)t2 + (ar + b)t3

νmd̄
(t) = (d̄r − d̄l) + tνθa(t)

νθc(t) = (cl − d̄r) + (−d̄l − cr)t

νmc(t) = (cr − cl) + tνθa(t)

νθc̄(t) = (c̄l − cr) + (−ar + b)t+ (−b− ā)t2

νmc̄(t) = (c̄r − c̄l) + tνθa(t)

νθd(t) = (dl − c̄r) + (c̄r + dl)t

νmd(t) = (dr − dl) + tνθa(t)

νθb(t) = (b− dr) + (−ā− ar)t+ (−ā− dr)t2 + (−b̄l − ar)t3

νθā(t) = (ā− b) + (d̄l + ar)t+ (ā+ al)t2 + (d̄r + b̄l)t3

νθb̄(t) = (̄bl − ā) + (−dl − b̄r)t+ (−b̄r + b̄l)t2 + (ā− dl)t3

νmb̄
(t) = (̄br − b̄l) + tνθa(t)



Milnor-Thurston kneading invariants

Finally, we formally write the above kneading invariants as a

linear combination of the base

(al, ar, d̄l, d̄r, cl, cr, c̄l, c̄r, dl, dr, b, ā, bl, br)

and organize the coefficients of all invariants but the first one in

matrix form, obtaining the following 13× 14 kneading matrix:



Milnor-Thurston kneading invariants

−1 + t 1 0 0 0 t3 0 −t3 0 0 0 t2 t2 −t

0 −1 + t3 1 + t2 0 0 0 0 0 0 0 −t2 + t3 0 0 0

t 0 −1 1 0 t3 0 −t3 0 0 0 t2 t2 −t

0 0 −t −1 1 −t 0 0 0 0 0 0 0 0

t 0 0 0 −1 1 + t3 0 −t3 0 0 0 t2 t2 −t

0 −t 0 0 0 −1 1 0 0 0 t− t2 −t2 0 0

t 0 0 0 0 t3 −1 1− t3 0 0 0 t2 t2 −t

0 0 0 0 0 0 0 −1 + t 1 + t 0 0 0 0 0

t 0 0 0 0 t3 0 −t3 −1 1 0 t2 t2 −t

0 −t− t3 0 0 0 0 0 0 0 −1− t2 1 −t− t2 −t3 0

t2 t t t3 0 0 0 0 0 0 −1 1 + t2 t3 0

0 0 0 0 0 0 0 0 −t− t3 0 0 −1 + t3 1 + t2 −t− t2

t 0 0 0 0 t3 0 −t3 0 0 0 t2 −1 + t2 1− t





Milnor-Thurston kneading invariants

Now we delete any column (for instance, the first one) and

compute the determinant D of the obtained 13 × 13 matrix.

The only factor of D containing real roots in [0,1) is

t10− 3t9− 14t8− 13t7− 17t6− 12t5− 17t4− 13t3− 14t2− 3t+ 1,

and the smallest root is λ ≈ 0.170554162.

The volume entropy of the presentation P3 is then

log(1/λ) ≈ log(5.86324007) .



It all depends on the presentation

Analyzing carefully all steps, one realizes that all the information

used (graph of the map, minimal bigons, itineraries, kneading

invariants) depends, at the end, only on the presentation:

P3 = 〈a, b, c, d | abābd, c2d〉



Examples


