A paradigmatic model

Interplanetary networks 00 000000 00000000 Other models 00 000000 0000 00

Invariant manifolds in Celestial Mechanics

E. Barrabés Vera

Universitat de Girona

Jornada de Sistemes Dinàmics a Catalunya

(JSDC 2019)

A paradigmatic model 0 00000 00000 00 Interplanetary networks 00 000000 0000000 Other models 00 000000 0000 00

Outline

Introduction

A paradigmatic model The circular RTBP Invariant manifolds Other manifolds

Interplanetary networks Space mission design Natural phenomena

Other models Bicircular Parabolic Other model

Introduction	
0.	

A paradigmatic model Interplanetary networks Other models

The comprehension of simple models allows both to understand the mechanisms that explain natural phenomena and to design spacecraft mission.

troduction	A paradigmatic model	Interplanetary networks	Other
•		00 000000	00 0000 0000 00

The comprehension of simple models allows both to understand the mechanisms that explain natural phenomena and to design spacecraft mission.

All models are wrong, but some are useful. George E. P. Box (1918–2013)

0

A paradigmatic model

• 00000 00000 00 Interplanetary networks 00 000000 0000000 Other models 00 000000 0000 00

Outline

Introduction

A paradigmatic model The circular RTBP Invariant manifolds Other manifolds

Interplanetary networks Space mission design Natural phenomena

Other models Bicircular Parabolic Other model

A paradigmatic model

 Interplanetary networks Other models

THE RESTRICTED THREE BODY PROBLEM

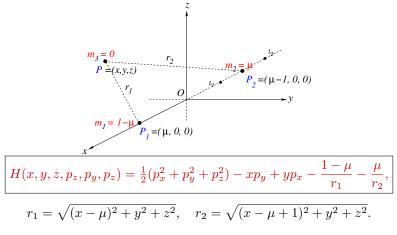
A paradigmatic model

Based on a novel of H. Poincaré

A paradigmatic model	Interplanetary networks
0	
0000	
00000	0000000
00	

The Circular Restricted Three Body Problem

The motion in a rotating system of a (massless) particle under the gravitational attraction of two main bodies (primaries) moving in a circular orbit

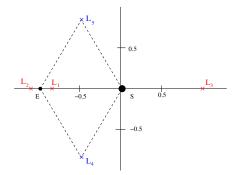


A paradigmatic model	Interplanetary netwo
0	
00000	000000
00000	0000000
00	

Planar Circular Restricted Three Body Problem (CRTBP)

Equilibrium points:

- L_1, L_2, L_3 collinear points
- L_4, L_5 triangular points



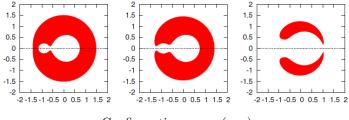
Energy (Jacobi constant): $C_{J} = -2h = x^{2} + y^{2} + 2\frac{1-\mu}{r_{1}} + 2\frac{\mu}{r_{2}} + \mu(1-\mu) - v^{2}$

n	A paradigmatic model	Interplanetary networks	Other models
	0 00000 00000 00	00 000000 0000000	00 000000 0000 00

Hill's region

For a fixed value of the energy, the zero velocity curves (surfaces) enclosed the Hill's regions where the motion is allowed.

$$v^{2} = x^{2} + y^{2} + 2\frac{1-\mu}{r_{1}} + 2\frac{\mu}{r_{2}} + \mu(1-\mu) - C_{J} \ge 0$$



Configuration space (x, y)

A paradigmatic model 0 0000 0000 00 00 00 Interplanetary networks 00 000000 00000000 Other models 00 000000 0000 00

Dynamics around the equilibrium points

- The triangular points, $L_{4,5}$, are linearly stable for small values of the mass parameter
- The collinear points, L_i , i = 1, 2, 3 are unstable:

 $\operatorname{Spec}(D\boldsymbol{f}(L_i)) = \{\lambda, -\lambda, i\omega_v, -i\omega_v, i\omega_p, -i\omega_p\},\$

Linear:	$\pm\lambda \ {f saddle}$	×	$\pm i\omega_p$ center	×	$\pm i\omega_v$ center
			\uparrow		\uparrow
Non-linear:	inv. manif.		planar p.o.		vertical p.o.

Cantor set of 2D tori

Intr		ti	on

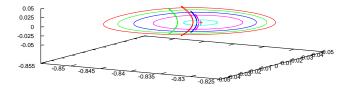
A paradigmatic model 0 0000 0000 00 00 00 Interplanetary networks 00 000000 00000000 Other models 00 000000 0000 00

Dynamics around the equilibrium points

- The triangular points, $L_{4,5}$, are linearly stable for small values of the mass parameter
- The collinear points, L_i , i = 1, 2, 3 are unstable:

$$\operatorname{Spec}(D\boldsymbol{f}(L_i)) = \{\lambda, -\lambda, i\omega_v, -i\omega_v, i\omega_p, -i\omega_p\},\$$

At each energy level $H = h \exists$ one planar and one vertical periodic orbits (Lyapunov p.o.). Along the families, bifurcations appear (halo orbits).



Credits: J.M. Mondelo

Intro	tion

A	paradigmatic	model
0	000	
	0000	
0	C	

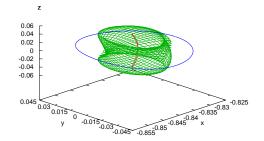
Interplanetary networks 00 000000 00000000 Other models 00 000000 0000 00

Dynamics around the equilibrium points

- The triangular points, $L_{4,5}$, are linearly stable for small values of the mass parameter
- The collinear points, L_i , i = 1, 2, 3 are unstable:

$$\operatorname{Spec}(D\boldsymbol{f}(L_i)) = \{\lambda, -\lambda, i\omega_v, -i\omega_v, i\omega_p, -i\omega_p\},\$$

At each energy level $H = h \exists$ a family of quasi-periodic orbits (inv. tori)



A paradigmatic model	Interplanetary networ
0	
00000	000000
0000	0000000
00	

Invariant manifolds in CRTBP

For X an unstable invariant object (equilibrium point, periodic or quasi periodic orbit):

$$W^{u}(X) = \{ \mathbf{q} \in \mathbb{R}^{6} \mid \lim_{t \to -\infty} d(\phi_{t}(\mathbf{q}), X) = 0 \},$$
$$W^{s}(X) = \{ \mathbf{q} \in \mathbb{R}^{6} \mid \lim_{t \to +\infty} d(\phi_{t}(\mathbf{q}), X) = 0 \},$$

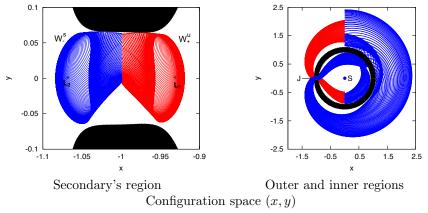
where ϕ_t is the flow and $d(\phi_t(\mathbf{q}), X)$ is the distance between $\phi_t(\mathbf{q})$ and X.

A paradigmatic model	Interpl
0	
00000	00000
00000	00000
00	

nterplanetary networks 00 000000 0000000 Other models 00 000000 0000 00

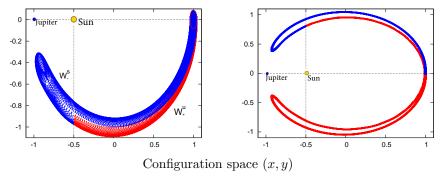
Invariant manifolds in CRTBP

Typical behavior of right $W^{u/s}_+$ and left $W^{u/s}_-$ branches associated to planar Lyapunov orbits around L_1 and L_2



Invariant manifolds in CRTBP

Typical behavior of right $W^{u/s}_+$ and left $W^{u/s}_-$ branches associated to planar Lyapunov orbits around L_3



Intro	du	cti	on

A paradigmatic model 0 00000 0 0000 0 0 Interplanetary networks 00 000000 00000000 Other models 00 000000 0000 00

Homoclinic and heteroclinic orbits

If there exists a transversal intersection of the stable and unstable i.m., the dynamics of the nearby orbits is complex and rich

- \exists a homo/heteroclinic connection: orbit that tends forward $(t \to +\infty)$ and backward $(t \to -\infty)$ to the hyperbolic object X/Y
- existence of infinitely many periodic orbits close to it (and performing a similar path)
- existence of homoclinic connections of *higher* order

Intro	duction	

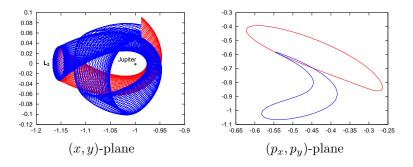
A	paradigmatic	model
C	000	
C	0	

Interplanetary networks 00 000000 0000000 Other models 00 000000 0000 00

Homoclinics to planar Lyapunov orbits around $L_{1,2}$

For a fixed energy h, a planar Lyapunov orbits OL_i , i = 1, 2, 3, and a fixed section Σ

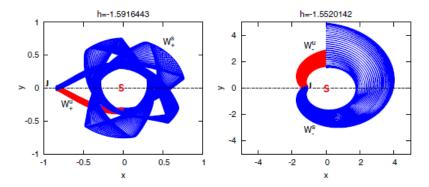
- $W^{u/s}(OL_i)$ are 2-dimensional (tubes)
- $W^{u/s}(X) \cap \Sigma$ are S^1 -like closed curves.



ction	A paradigmatic model	Interplanetary networks	Other models
	0		
	00000	0000000	0000
	00		00

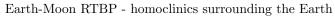
Homoclinics to planar Lyapunov orbits around $L_{1,2}$

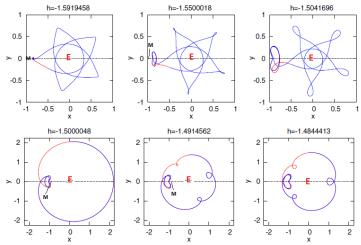
Surrounding the big primary: $W^{u/s}_+(OL_1)$ (left) or $W^{u/s}_-(OL_2)$ (right)



A paradigmatic model	Interplanetary networks	Other models
00000	0000000	0000
00		00

Homoclinics to planar Lyapunov orbits around $L_{1,2}$

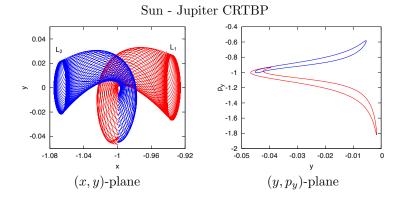




A paradigmatic model	Interplanetary netwo
0	
00000	000000
00000	0000000
00	

Heteroclinic to Lyapunov orbits around $L_{1,2}$

Heteroclinic connections: $W^u(OL_1) \cap W^s(OL_2)$

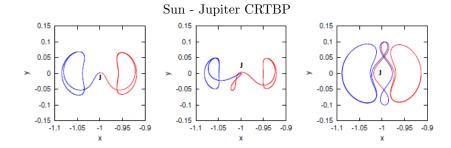


Intr	odu	cti	on

A paradigmatic model Interplanetary networks Other models

Heteroclinic to Lyapunov orbits around $L_{1,2}$

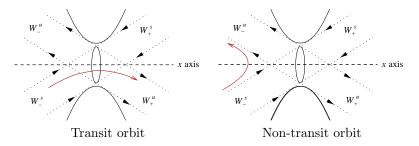
Heteroclinic connections: $W^u(OL_1) \cap W^s(OL_2)$



uction	A paradigmatic model	Interplanetary networks	Other models
	0		
	00000	0000000	0000
	00		00

Transit and non-transit orbits in planar CRTBP

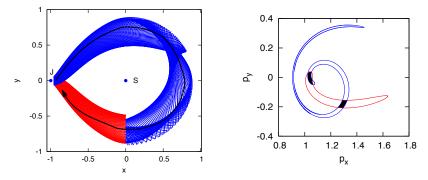
A trajectory approaching a p.o., either forward or backward in time from one of the three regions, is considered *transit* if it traverses the bottleneck corresponding to the LPO and goes to the next region



Transit orbits are known to lie in the *interior* of the invariant manifold tubes of the p.o., that separate them from non-transit orbits (Conley,1968; McGehee 1969)

A paradigmatic model	Interplanetary networks
00000	0000000
00	

Transit and non-transit orbits in planar CRTBP

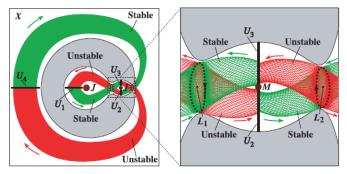


Transit from Jupiter region \rightarrow inner region \rightarrow Jupiter region: the orbits may lie in the interior of both invariant manifolds W^u and W^s

A paradigmatic model	Interplanetary networks
00000	0000000
00	

Transit and non-transit orbits in planar CRTBP

Transition chain



Credits: Gomez et al. Nonlinearity (2004)

Intr	ctic	

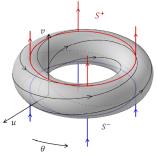
Α	paradigmati	c model
0		
00	0000	
	2	

Interplanetary networks 00 000000 00000000 Other models 00 000000 0000 00

Other manifolds

Ejection-Collision Orbit (ECO): the distance between the particle and a primary tends to zero when $t \to t_0^+$ (ejection) and $t \to t_1^-$ (collision).

• Key point: heteroclinic connections between different equilibrium points living on the collision manifold (regularization of the singularity at the primary): a 2-d torus with two circles of equilibrium points



3d invariant manifolds $W^u(S^+)$ ejection orbits , $W^s(S^-)$ collision orbits

Credits: Ollè, Rodríguez, Soler, CNSNS (2017)

(JSDC 2019)

Intr	ctic	n

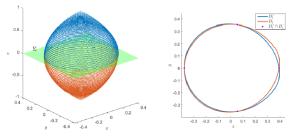
Α	paradi	gmatic	model
0			
00			
00	0000		
	2		

Interplanetary networks 00 000000 00000000 Other models 00 000000 0000 00

Other manifolds

Ejection-Collision Orbit (ECO): the distance between the particle and a primary tends to zero when $t \to t_0^+$ (ejection) and $t \to t_1^-$ (collision).

• Key point: heteroclinic connections between different equilibrium points living on the collision manifold (regularization of the singularity at the primary): a 2-d torus with two circles of equilibrium points

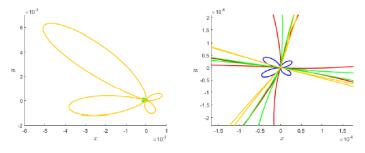


First intersection of $W^u(S^+) \cap \Sigma$, $W^s(S^-) \cap \Sigma$

Credits: Ollè, Rodríguez, Soler, CNSNS (2017)

A paradigmatic model	Interplanetary networks
0	
00000	000000
00000	0000000
0.	

Ejection-Collision Orbit (ECO)



Second intersection of $W^u(S^+)\cap\Sigma$, $W^s(S^-)\cap\Sigma$

Credits: Ollè, Rodríguez, Soler, CNSNS (2017)

 A paradigmatic model
 Interplanetary networks

 0
 00

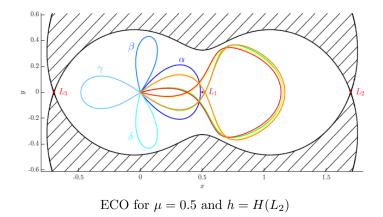
 000000
 000000

 000000
 0000000

 00
 0000000

Other models 00 000000 0000 00

Ejection-Collision Orbit (ECO)



Credits: Ollè, Rodríguez, Soler, CNSNS (2017)

A paradigmatic model 0 00000 00000

 Other models 00 000000 0000 00

Outline

Introduction

A paradigmatic model The circular RTBP Invariant manifolds Other manifolds

Interplanetary networks Space mission design Natural phenomena

Other models Bicircular Parabolic Other model

A paradigmatic model

000000

 Interplanetary networks

 ○●

 ○○○○○○○

 ○○○○○○○○

Other models 00 000000 0000 00

Interplanetary network

(JSDC 2019)

Int	rod	tio	n

A paradigmatic model 0 00000 00000 Interplanetary networks 00 •000000 00000000 Other models 00 000000 0000 00

Space mission design

• Patched-conic method: Keplerian approximation of a trajectory by linking different trajectories of a chain of two-body problems. The Sun – SC problem is followed until the SC reaches the sphere of influence of a planet.

 $Planet - Spacecraft \longrightarrow Sun - SC \longrightarrow Planet - SC \longrightarrow \dots$

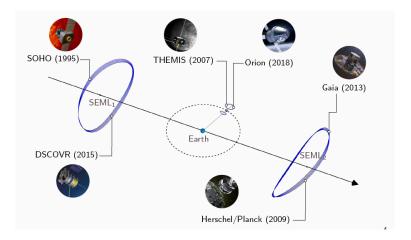
Pioneer (1972), Voyager (1977), Galileo (1989), Mars Observer (1992)

• More demanding missions need better approximations. The Circular RTBP can be used as a (very good) first model to obtain initial seeds that can be refined to obtain solutions in a more complex models. "Low energy transfers" $+ \Delta v$

Navigation using invariant manifolds and chains of homo/heteroclinic connections.

A paradigmatic model Interplanetary networks Other models

Libration point orbits missions

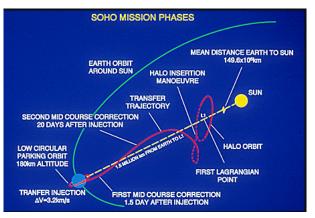


A paradigmatic model

000000

Interplanetary networks 00 000000 0000000 Other models 00 000000 0000 00

SOHO 1995 – ...



Schematic view of the SOHO transfer to a halo orbit around Sun-Earths L_1 point.

Credit: NASA

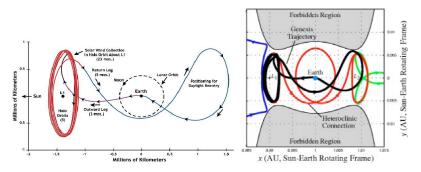
A paradigmatic model	Interplat
0	
	000000
00000	000000
00	

Interplanetary networks

Other models 00 000000 00000 00

Genesis 2001-2004

Genesis is considered the first mission designed using modern Dynamical Systems theory.



First approximation chain starting at parking orbit around the Earth:

 $W^{s}(\Gamma_{1}) \to \Gamma_{1} \to W^{u}(\Gamma_{1}) \cap W^{s}(\Gamma_{2}) \to W^{u}(\Gamma_{2}) \cap E$

credits: NASA and Koon et al. Chaos (2000)

(JSDC 2019)

A paradigmatic model

Interplanetary networks 00 000000 0000000 Other models 00 000000 0000 00

Artemis 2010

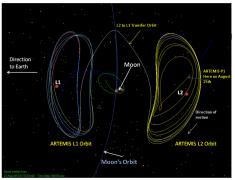


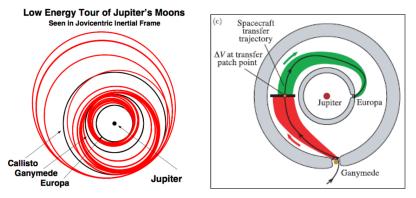
Illustration of ARTEMIS-P1 Librations Orbits Credit: NASA GSEC

Mission Themis was launched to Earth-Moon L_2 point in 2007. In 2010 two satellites were reconverted to Artemis mission: one around L_2 while the other was sent to L_1 through a heteroclinic connection.

Credit: NASA

A paradigmatic model 00000 00000 00000 Interplanetary networks 00 000000 0000000 Other models 00 000000 0000 00

Low energy tour on Jupiter's Moons



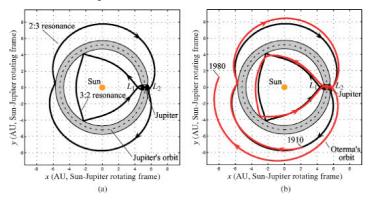
 $\label{eq:chain of different CRTPB:} Chain of different CRTPB: Transfer through $L_{1,2}$ in Jupiter-Ganymede's system – "heteroclinic connection" of i.m. of different systems – transfer through $L_{1,2}$ in Jupiter-Europas's system$

Credits: Gomez et al, Nonlinearity (2004)

Introduction	A paradigmatic model	Interplanetary networks	Other models
	0 00000 00000 00	00 000000 0000000	00 000000 0000 00

Oterma

Oterma follows a trajectory outside Jupiter's orbit close to 2:3 resonance, has a passage through Jupiter's region, and then follows a trajectory inside Jupiter's orbit close to 3:2 resonance



Homoclinic to L_1 + homoclinic to L_2

(JSDC 2019)

Credits: Koon et al, Chaos (2000)25 / 46

Ι	nt	rc		ti	io	
	00					

A paradigmatic model 0 00000 00000 00 **Interplanetary networks**00
000000
0●000000

Other models 00 000000 0000 00

Resonances

Resonances are defined in terms of two body dynamics:

- An elliptic (keplerian) orbit is p:q resonant with Jupiter, if it performs p revolutions around the Sun while Jupiter performs q revolutions.
- The mean motion equals $a^{-3/2} = p/q$, being *a* the semimajor axis that can be calculated as

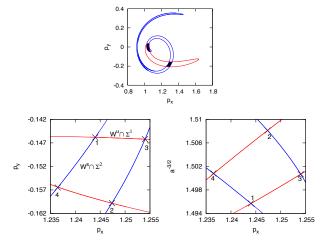
$$a^{-1} = \frac{2}{r} - v^2$$

• For trajectories of the CRTBP that behave essentially as a two-body solution, a will be approximately constant. We can compute its approximate value for the homoclinics that provide the dynamical chains

A paradigmatic model	Interplanetary netw
0	
00000	000000
00000	0000000
00	

Families of homoclinic connections: resonances

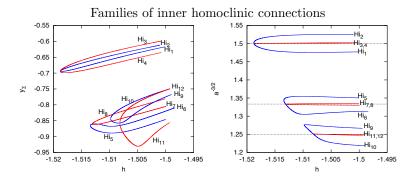
Homoclinic connections to OL_1 in the Sun-Jupiter CRTBP: $W^s_+(OL_1) \cap W^u_+(OL_1)$



Credits: B, Mondelo, Ollè, Nonlinearity (2013)

A paradigmatic model	Interplanetary networks
0 00000 00000 00	00 000000 000000

Families of homoclinic connections: resonances

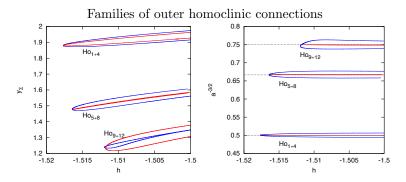


Resonances at 3:2, 4:3, 5:4

Credits: B, Mondelo, Ollè, Nonlinearity (2013)

A paradigmatic model	Interplanetary networks	(
00000	000000	
00000	0000000	(
00		(

Families of homoclinic connections: resonances



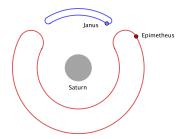
Resonances at 3:4, 2:3, 1:2

Credits: B, Mondelo, Ollè, Nonlinearity (2013)

A paradigmatic model
ir paradigitatio inodoi
00000
00000
00

Interplanetary networks 00 000000 0000000 Other models 00 000000 0000 00

Co-orbital motions



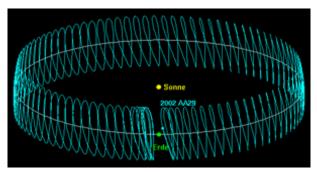
Schematic motion of Janus and Epimetheus around Saturn. Each satellite is shown in a rotating frame.

Credits: NASA-JPL

(JSDC 2019)

A paradigmatic model	Interplanetary networks	Oth
0 00000 00000 00	00 000000 000 0 000	
Calarhit.	1	

Co-orbital motions



Schematic motion of Earth quasi-satellite 2002 AA29. Co-orbital (horseshoe) motion in Sun-Earth system.

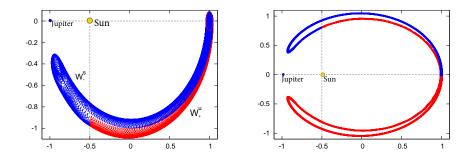
Credits: JPL

Intro	du	cti	on

A paradigmatic model D D0000 D0000 D0 Interplanetary networks 00 000000 00000000 Other models 00 000000 0000 00

Homoclinics to Lyapunov orbits around L_3

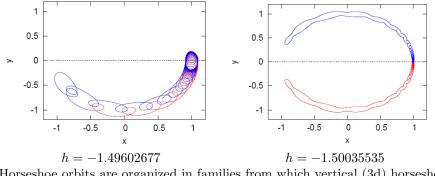
Sun - Jupiter CRTBP - (half) horseshoe-shape homoclinics



A paradigmatic model	Interplanetary network
0	
00000	000000
00000	00000000
00	

Homoclinics to Lyapunov orbits around L_3

Sun - Jupiter CRTBP - (half) horseshoe-shape homoclinics



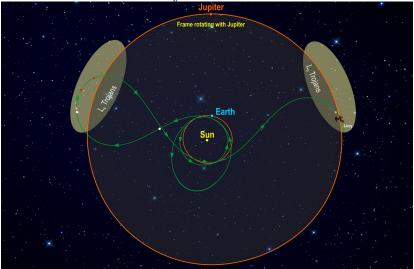
Horseshoe orbits are organized in families from which vertical (3d) horseshoe orbits bifurcate

A paradigmatic model

0000

Interplanetary networks 00 00000 0000000 Other models 00 000000 0000 00

Trojan Asteroids



tion A paradigmatic me	odel Interplanetary networks	Other models
0 00000 00000 00	00 000000 000000€0	00 000000 0000 00

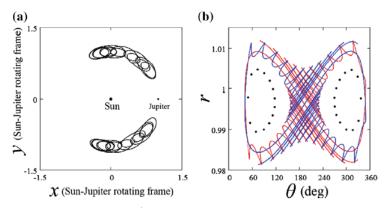
Regions of effective stability around triangular equilibrium points

- The triangular equilibrium points $L_{4,5}$ are linearly stable for $\mu < \mu_R \simeq 0.0381...$ Using KAM theory, \exists a dense set of invariant tori close enough to the equilibria.
- In the planar case, for each fixed energy level, the KAM tori of dimension 2 act as barriers for the dynamics. This is not true for the spatial case.
- Numerical simulations provide evidences of large regions of practical stability near $L_{4,5}$ in which the motion is non-stable but initial conditions take a long time to escape
- There is numerical evidence on the role of the centre-unstable and centre-stable manifolds of the collinear point L_3

on	A paradigmatic model	Interplanetary networks
	0	00
		000000
	00	

Jumping Jupiter's Trojans

Sun–Jupiter RTBP. Poincaré section $\dot{r} = 0$ (Sun centered polar coord. (r, θ))



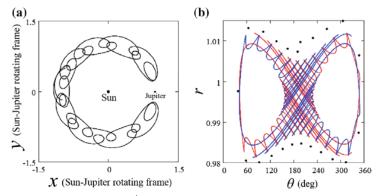
Tadpole orbits and $W^{u/s}(OL_3)$ (Lyapunov planar orbit around L_3)

Credits: Oshima, Yanao, Cel.Mech.Dyn.Astr. (2015)

on	A paradigmatic model	Interplanetary network
	0	
	00000	000000
	00000	0000000
	00	

Jumping Jupiter's Trojans

Sun–Jupiter RTBP. Poincaré section $\dot{r} = 0$ (Sun centered polar coord. (r, θ))

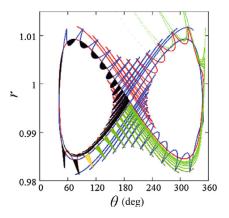


Horseshoe orbit and $W^{u/s}(OL_3)$ (Lyapunov planar orbit around L_3)

Credits: Oshima, Yanao, Cel.Mech.Dyn.Astr. (2015)

A paradigmatic model 0 00000 00000 00 Interplanetary networks ○○ ○○○○○○ ○○○○○○● Other models 00 000000 0000 00

Jumping Jupiter's Trojans

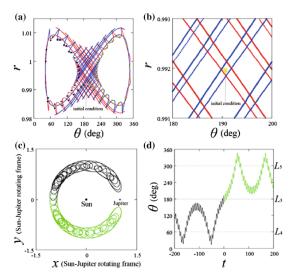


Regions of escape from and capture into (forwards or backwards) the vicinity of L_4 through a neighborhood of L_3

Credits: Oshima, Yanao, Cel.Mech.Dyn.Astr. (2015)

A paradigmatic model Interplanetary networks Other models

Jumping Jupiter's Trojans



Credits: Oshima, Yanao, Cel.Mech.Dyn.Astr. (2015)46

(JSDC 2019)

A paradigmatic model 0 00000 00000

Interplanetary networks 00 000000 00000000

Outline

Introduction

A paradigmatic model The circular RTBP Invariant manifolds Other manifolds

Interplanetary networks Space mission design Natural phenomena

Other models Bicircular Parabolic Other models

A paradigmatic model 000000 000000 00000 Interplanetary networks 00 000000 00000000

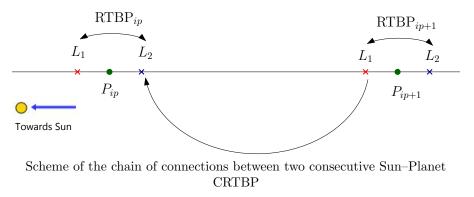
Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful.

George E. P. Box (1918–2013)

duction	A paradigmatic model	Interplanetary networks	Other models
	0 00000 00000 00	00 000000 00000000	00 000000 0000 00

Short-time mass transport

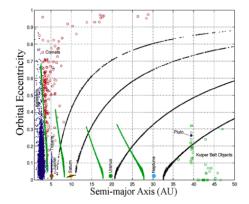
Short-time transport is based on the \exists of pseudo-heteroclinic connections between libration point orbits of uncoupled pairs of consecutive CRTBP



A paradigmatic model	Interplanetary networks
00000	00000000
00	

Short-time mass transport

Osculating orbital elements of the 1-dimensional invariant manifolds $W^u(L_2)$ and $W^s(L_1)$ of the collinear libration points L_1 and L_2 in a chain of CRTBP

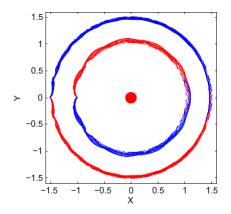


Credits: Lo, Ross, Tech. Report. (1999)

1 A parad 0 00000

radigmatic model 00 00 Interplanetary networks 00 000000 00000000 Other models

Short-time mass transport

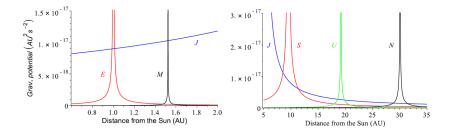


Branches of stable (blue) and unstable (red) invariant manifolds of p.o. around L_1 in the Sun–Mars and L_2 in the Sun–Earth CRTBP. In "short-time", they do not intersect.

Credits: Y.Ren, M.Masdemont, G. Gómez, E.Fantino, Commun. Nonlinear Sci Numer. Simulat. (2012)

A paradigmatic model	Interplanetary networks
	000000
00	00000000

Gravity potential in the Solar System

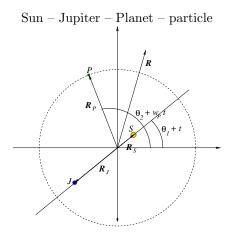


Values of the gravity potential (in AU^2s^{-2}) of the: (LEFT) Earth, Mars and Jupiter up to 2 AU and (RIGHT) Jupiter, Saturn, Uranus and Neptune in the outer Solar System

tion	A paradigmatic model	Interplanetary networks	Other mo
	0		
	00000	000000	000000
	00000	0000000	0000
	00		00

Bicircular Restricted Four Body Problem (BR4BP)

Is a periodic perturbation of the CRTBP that includes the gravitational effect of a third primary on the particle.



A paradigmatic model 0 00000 00000 00 Interplanetary networks 00 000000 00000000 Other models

Bicircular Restricted Four Body Problem (BR4BP)

Is a periodic perturbation of the CRTBP that includes the gravitational effect of a third primary on the particle.

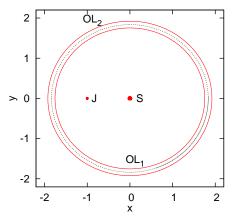
$$H = \frac{1}{2}(p_x^2 + p_y^2 + p_z^2) - xp_y + yp_x - \frac{1-\mu}{r_1} - \frac{\mu}{r_2} - \frac{\mu}{r_P} + \frac{\mu}{a_P^2}(y\sin\theta + x\cos\theta)$$

$$\begin{array}{rcl} r_1 &=& ((x-\mu)^2+y^2)^{1/2}, & \mu &=& \frac{m_J}{m_J+m_S}, \\ r_2 &=& ((x-\mu+1)^2+y^2)^{1/2}, & \mu_P &=& \frac{m_J}{m_J+m_S}, \\ r_P &=& ((x-a_P\cos\theta)^2+(y-a_P\sin\theta)^2)^{1/2}, & \\ \theta &=& \theta_2-\theta_1+t(\omega_P-1), & \omega_P^2a_P^3 &=& 1+\mu_P \end{array}$$

A paradigmatic model	Interplanetary networks
00000	0000000
00	

Dynamical substitutes in the BR4BP

The equilibrium points L_i of the Sun-Planet CRTBP are replace by periodic orbits.



Projection in configuration space (rotating coordinates) of the dynamical substitutes $_{(JSDC\ 2019}OL_1$ and OL_2 (orbit of the planet in a dotted line) $_{38/46}$

Intr	ctic	n

Interplanetary networks 00 000000 0000000

Dynamical substitutes in the BR4BP

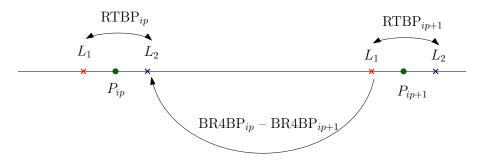
The dynamical substitutes OL_i inherit the hyperbolicity.

Outer planets	$\Lambda(OL_i), i = 1, 2$	Inner planets	$\Lambda(OL_i), \ i = 1, 2$
Neptune	3.492, 3.286	Mars	$9 \times 10^7, 2.5 \times 10^8$
Uranus	14.105, 12.473	Earth	$2.8 \times 10^7, \ 3.4 \times 10^7$
Saturn	$6.5 \times 10^4, 2.5 \times 10^4$	Venus	$1.5 \times 10^7, \ 1 \times 10^7$

Value of the eigenvalue $\Lambda > 1$ corresponding to the dynamical substitutes OL_i^{ip} , i = 1, 2 of each bicircular problem.

A paradigmatic model	Interplanetary networks	Other mode
0 00000 00000 00	00 000000 0000000	

Mass transport: chain of BR4BP

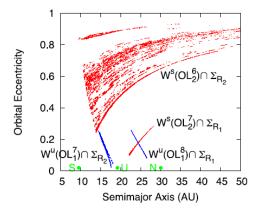


Chain of the models: Sun-Jupiter-Planet_{ip} – Sun-Jupiter-Planet_{ip+1} $\boxed{W^s(OL_2^{ip}) \cap W^u(OL_1^{ip+1})}$

A paradigmatic model	Interplanetary networks
00000	0000000
00	

Mass transport: chain of BR4BP

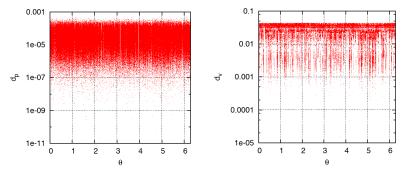
Osculating semimajor axis vs eccentricity for the points (at a given section) of $W^u(OL_1^8)$ and $W^u(OL_1^7)$ (in blue), and $W^s(OL_2^7)$ and $W^s(OL_2^6)$ (red)



A paradigmatic model	Interpl
0	
00000	00000
00	

tterplanetary networks 0 00000 0000000 Other models 00 000000 00000 00

Mass transport: chain of BR4BP The invariant manifolds $W^s(OL_2^{ip})$ and $W^u(OL_1^{ip+1})$ are followed up to a intermediate section R =const. to look for intersections. When there is a match in position, Δv is measured



Minimum distances d_p (positions, left) and d_v (velocities, right) between points of the invariant manifolds at the section Σ_{R_1} of the Uranus and Neptune bicircular problems

(JSDC 2019)

A paradigmatic model 0 00000 00000 Interplanetary networks 00 000000 0000000 Other models

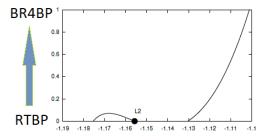
The BR4BP: yes and no

• The BR4BP can be a good model

- to explore the intersection of the $W^{u/s}(OL_{1,2})$ in a chain of bicircular models for the outer Solar System to explain mass transport. Only linear approximation of $W^{u/s}$ and short time (10000 × period Jupiter) has been taken into account. Better approximations and longer times could improve the results and give intersections, even for the inner planets.
- for the study of the vicinity of the triangular points $L_{4,5}$ of the main two bodies (two regions of effective stability).

The BR4BP: yes and no

• The BR4BP is not useful for the study of the the translunar point in the Earth-Moon-Sun-particle system.



Credits: M. Jorba. PhD Thesis. (2019)

A paradigmatic model 0 00000 00000 00000 Interplanetary networks 00 000000 0000000 Other models

The BR4BP: yes and no

- The BR4BP is not a coherent model: the primaries does not verify Newton's laws. The Quasi-Bicircular Problem is a coherent version of the BR4BP: needs the computation of a quasi-bicircular solution of the three body problem.
- The Solar Radiation Pressure can be included in both the BR4BP and the Quasi-Bicircular model

A paradigmatic model

Interplanetar Other models

A paradigmatic model

000000

Interplanetary networks 00 000000 0000000 Other models

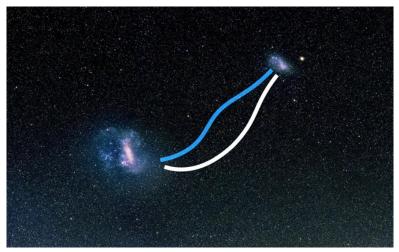
000000 0000 00

Galaxies NGC 3808A (right) and NGC 3808B (left).

Credits: NASA, Hubble Space Telescope (2015)

A paradigmatic model

0 00000 00000 Interplanetary networks 00 000000 00000000 Other models



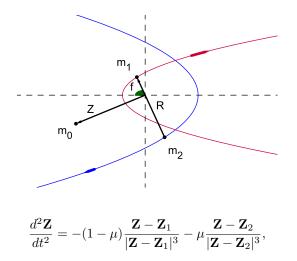
Magellanic system

Credits: Belokurov et al. MNRAS (2017)

A paradigmatic model

Interplanetary networks 00 000000 00000000 Other models

The Planar Parabolic Restricted Three-Body Problem



A paradigmatic model O 000000 00000 Interplanetary networks 00 000000 0000000 Other models ○○ ○○○○○○ ○○○○○○ ○○○○○○ ○○

The Planar Parabolic Restricted Three-Body Problem

Compatification to extend the flow when $s \to \pm \infty$: $\sin(\theta) = \tanh(s)$.

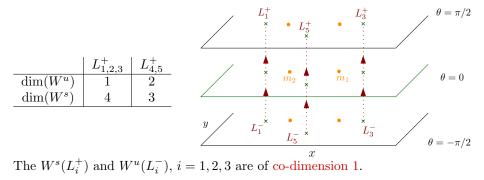
$$\begin{cases} \frac{d\theta}{ds} = \cos\theta, \\ \frac{d\mathbf{z}}{ds} = \mathbf{w}, \\ \frac{d\mathbf{w}}{ds} = -A(\theta)\mathbf{w} + \nabla\Omega(\mathbf{z}) \end{cases} A(\theta) = \begin{pmatrix} \sin\theta & 4\cos\theta \\ -4\cos\theta & \sin\theta \end{pmatrix}, \\ \frac{d\mathbf{w}}{ds} = -A(\theta)\mathbf{w} + \nabla\Omega(\mathbf{z}) \end{cases}$$
$$\Omega(\mathbf{z}) = x^2 + y^2 + 2\frac{1-\mu}{\sqrt{(x-\mu)^2 + y^2}} + 2\frac{\mu}{\sqrt{(x-\mu+1)^2 + y^2}}.$$

 $\theta = \pm \pi/2$ are invariant \rightarrow Boundary problems (infinity)

A paradigmatic model	Interplanetary networks	Other m
0		
00000	0000000	0000
00		00

The Planar Parabolic Restricted Three-Body Problem

10 equilibrium points at the boundaries of the phase space that correspond to "infinity": $L_{1,2,3}^{\pm}$, collinear points, $L_{4,5}^{\pm}$ triangular points



Intro	cti	on

Interplanetary networks 00 000000 00000000

Generating bridges and tails

Dynamics forwards in time:

- There exist of only two different types of final evolutions: capture orbit (around a primary) or escape orbit (far away from both primaries). Collision manifolds: $W^{u/s}(m_j)$.
- The invariant manifolds $W^u(L_{1,2,3}^-)$ and $W^s(L_{1,2,3}^+)$ are of codimension 1: they behave as a frontier and divide the phase space in regions where only one of the two final evolutions are allowed: escape or capture.
- Heteroclinic connections between the equilibrium points and the collision manifolds:

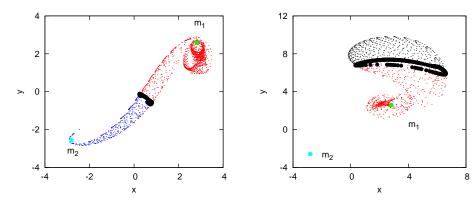
 $W^{s}(L_{i}^{+}) \cap W^{u}(m_{j}), \qquad i = 1, 2, 3 \quad j = 1, 2$

Intro	ducti	on

paradigmatic model

Interplanetary networks 00 000000 0000000 Other models

Bridges and Tails

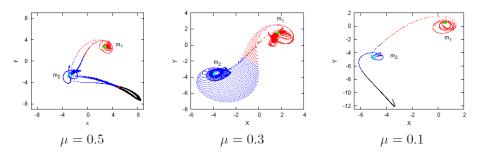


 $\mu = 0.5$

Intr	odu	ctic	n

A paradigmatic model 0 00000 00000 Interplanetary networks 00 000000 0000000 Other models ○○ ○○○○○○ ○○○● ○○

Bridges and Tails



A paradigmatic model	Int
0	
00000	00
00000	00
00	

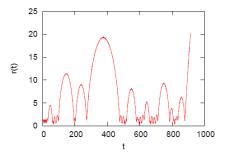
Interplanetary networks 00 000000 00000000 Other models

Atomic dynamics

The same methodologies/ideas can be applied to atomic (classic) dynamics:

• ionization in a hydrogen atom in a circularly polarized microwave field

$$H = \frac{1}{2}(p_x^2 + p_y^2) - (xp_y - yp_x) - \frac{1}{r} + Kx$$



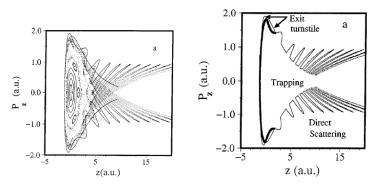
A paradigmatic model	
0	
00000	

Interplanetary networks 00 000000 00000000 Other models

Atomic dynamics

The same methodologies/ideas can be applied to atomic (classic) dynamics: • the scattering of the ${}^{4}He$ from different Cu surfaces

$$H = \frac{1}{K}(p_x^2 + p_z^2) + V(x, z)$$



Credits: Borondo, Guantes, Phys. Rev. E (1997)

A paradigmatic model

Interplanetary networks 00 000000 00000000 Other models

0000000

Thank you for your attention

(JSDC 2019)