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A motivating example

Consider the family of polynomial planar vector fields
Xu(z,y) = y(x — 1)z + (x + py®)dy with p e (0, 3).

It has a center at the origin as unique critical point. Since its period annulus is
unbounded, we compactify R? to RP?. So we consider the coordinates of RP?

given by (z1,91) = (%1—700) and (22, 72) = (ﬁ %) , which yield to

Xu(@i,m1) = o (@1(—p — 27 + 2191) 00, +y1(1 — p— 27 + 191)dy,)

and

XM(IZayQ) = 3712(*5522426962 + (=22 + x% + (= 1)y§)ay2)'
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A motivating example

Y1

A
) m

Yo

(x1,y1) = (0,0) is a hyperbolic saddle of ;X
(x2,y2) = (0,0) is a degenerate singularity of 29X,

JORDI VILLADELPRAT (URV) Normal forms and Dulac time BCN 2018



A motivating example

We blow-up (x2,y2) = (0,0) taking (t1,x2) and (s1,y2) with yo = t1z9 and
To = S1Y2, which yield to

Xu(tla 172) = %((*1 + To + Mt%l‘g)&tl — tll‘gamz)

and

Xu(s1,92) = 811y2 (81(51 — Y2 — $7Y2)0s,
+ya(—=s1 4 (1 — Dy + 5792)0y,)

respectively. Note that 2X,,(t1,22) has not any singularity along x5 = 0. In the

second chart, s1y2X,(s1,y2) still has a degenerate singularity at (s1,y2) = (0,0)
and so we must blow-up again.
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A motivating example

To this end we take two new charts coordinated by means of (s1,t2) and (s2,y2)
with yo = t9s1 and s; = soy». The expression of X, in these charts is

XH(Sl,t2> = ﬁ(sl(l — Mﬁg — S%tg)asl
+ta(=2+ (2u — 1)t + 285t2)04,)

and

Xu(827y2) = 321y2 (82(1 - 2#’ =+ 282 - 2S§y§)882
+ya(p— 1 — s34 53Y35)0y,)

respectively, which have only hyperbolic saddles at the origin.
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A motivating example

At this point we rename the new coordinates in order to unify the notation and we
also give their expressions in terms of the original (x,y) coordinates:

(w1, v1) = (y1,21) = (1771:’ i) (us,v3):= (s1,t2) = (j %)

(uz,v2):= (s2,42) = (1;2907 %) (ug,v4):= (t1,22) = <y7 ﬁ)
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A motivating example

We obtain in addition the following vector fields

1
Xy (ui,vi) = W(Uipi(uiavi)am + 0;Qi (ug, vi) 0y, )

for i =1,2,3, with
Pi(u,v) =1 — p + uv — v? (mqy,n1) = (0,1)
Q1(u,v) = —p + uv — v? A= £

Py(u,v) =1 —2u + 2u — 2u?v? (ma,n2) = (1,1)

Qo (u,v) = pp— 1 —u + uv? Ao = 11:2’L

Py(u,0) = 1— oo — uv (3, ns) = (1,1)
Qs3(u,v) = =2+ (2p — 1)v + 2u?v Az =2
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A motivating example

\ Vo \

Q
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Temporal normal form

Let us consider a €* unfolding {X,,} e of a hyperbolic saddle point at the origin.
More precisely

X, = xA(z,y; 1) 0z + yB(x, y; 1) 0y
where
e U is an open set of RM,
e A and B belong to €*(V x U) for some open set V' containing the origin,
e A(0,0; 1) =1 and A(p):= —B(0,0; ) > 0 for all pe U.
We also consider the collinear family

1
Y, = — X, where v:=2™y" and m,n € Z.
v
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Temporal normal form

e Two vector fields Z and W are conjugate if there exists a change of
coordinates ® transforming Z to W, i.e., ®*Z = W, where

(@*2)(p):= (D®) " (Z 0 ®(p)).

The vector fields Z and W are equivalent at a point pg, if they are conjugate
up to a nonzero multiple: ®*Z = fW with f(pg) # 0.

When dealing with families of vector fields Z,, and W, then we ask
O:VxU-—VxU

to preserve the planes ;1 =constant, i.e., ®(z,y, u) = (P, (x,y), ).
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Temporal normal form

e Two vector fields Z and W are conjugate if there exists a change of
coordinates ® transforming Z to W, i.e., ®*Z = W, where

(@*2)(p):= (D®) " (Z 0 ®(p)).

The vector fields Z and W are equivalent at a point pg, if they are conjugate
up to a nonzero multiple: ®*Z = fW with f(pg) # 0.

When dealing with families of vector fields Z,, and W, then we ask
O:VxU-—VxU

to preserve the planes ;1 =constant, i.e., ®(z,y, u) = (P, (x,y), ).

o f:R2xU — Ris N-flat wrt (z,y) if it is €NV +! and verifies the estimates
max {[07 f(z,y, p)| = [I| = i} < C|l(z, )|V, i =0,1,.... N,

in some neighbourhood of (0,0, 1p) € R2x U and a constant C' > 0.
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Temporal normal form

o Fix pp € U and set A\g = A(po). It is well-known that X, is € equivalent to

20, + (=p/a+ ) ains @y")' )y,

=0

if Ao = p/q with ged(p,q) = 1. In case that \g ¢ Q then «; = 0 for all ¢ € N.
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Temporal normal form

o Fix pp € U and set A\g = A(po). It is well-known that X, is € equivalent to
20, + (=p/a+ Y aia(@y")' )y,
=0
if Ao = p/q with ged(p,q) = 1. In case that \g ¢ Q then «; = 0 for all ¢ € N.

e The orbital codimension of X, is k = 0 if Ag ¢ Q and, otherwise,

K= min{i eEN:oyp1 # 0}.
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Temporal normal form

o Fix pp € U and set A\g = A(po). It is well-known that X, is € equivalent to

20, + (=p/a+ Y aia(@y")' )y,
i=0
if Ao = p/q with ged(p,q) = 1. In case that \g ¢ Q then «; = 0 for all ¢ € N.
e The orbital codimension of X, is k = 0 if Ag ¢ Q and, otherwise,

K= min{i eEN:oyp1 # 0}.

e This is well defined because the monomial (2Py?)* can not be annihilated by
means of a smooth coordinate transformation preserving the normal form.
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Temporal normal form

Y, = L (@A(w,y; 1)0 + yB(x,y; 1)y) with v = 2y

Theorem A

Fix 1o € U and set A\g = A(p0). Then for any k € N the family {Y),},cv is wh
conjugate in a neighbourhood of (0,0, o) € RZx U to

1

where
(a) if Ao ¢ Q then P, =Q, =0,

(b) if Ao = p/q with ged(p, q) = 1 then P, and @, are polynomials in the
monomial u = 27y? and ¢ = min{}3 € Z B(p,q) = (m,n)}.

Moreover in case that X,,; has orbital codimension x < o0 then deg P,
and deg @, < k£ —min(4, 1).

< 2K
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Preliminary results

X, = zA(x,y; 1)0z + yB(z, y; 1) 0y
[Roussarie 1975], [Samovol 1982], [II'yashenko and Yakovenko 1991], ...

Theorem 1

Fix o € U and set A\g = A(o). Then for any k € N the family {X,},cv is (s
equivalent in a neighbourhood of (0,0, i) € R2xU to

XliVF =20, + (—A(1) + Pu(u))yoy,

where
(a) if Ao ¢ Q, then P, =Q, =0,

(b) if Ao = p/q with ged(p, ¢) = 1, then P, and @, are polynomials in the
resonant monomial u = zPy9.
Moreover, if X, has orbital codimension x < o0 then deg P, < 2.
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Sketch of the proof of Theorem 1

o Let H” be the vector space of homogeneous vector fields of degree h and let
L =20, — M(p)ydy € H* be the linear part of X,,. Then

[L,2'y70,] = (1 — i+ jA(n))z'y? 0,
[L,a'y70,] = (—i + (j — DA(n) 'y 0,
For each h, the mapping [L, -] : H" — H" is linear and

H" = (Im[L, -]) ® (Ker[L, -]).

e For any N there exists a polynomial change of coordinates transforming the
vector field family X, to the form

x&z - )‘(.u)yay +g2+ - +gn+ R(Iay),

where gj, € Ker[L, -] for h =1,...,N and R(x,y) = o(|(z, y)|™).
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Sketch of the proof of Theorem 1

o If Mg ¢ Q then, for it ~ po, X, is linearizable up to an N-flat term for any V.

If Ao = p/q with ged(p, q) = 1 then, for u ~ pp and up to an N-flat term, all
monomials can be eliminated except for the resonant ones:

uFz0, and u"yd, with u = 2Py

When working with equivalence and not conjugacy relation, it is legitimate to
divide by the component of 0., so that we get XNE 4 R with

XN = 20, + (=M (1) + Pu(w))ydy and R(z,y) = o] (z,y)|™)
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Sketch of the proof of Theorem 1

o If Mg ¢ Q then, for it ~ po, X, is linearizable up to an N-flat term for any V.

If Ao = p/q with ged(p, q) = 1 then, for u ~ pp and up to an N-flat term, all
monomials can be eliminated except for the resonant ones:

uFz0, and u"yd, with u = 2Py

When working with equivalence and not conjugacy relation, it is legitimate to
divide by the component of x0,, so that we get XNE 4 R with

XN = 20, + (=M (1) + Pu(w))ydy and R(z,y) = o] (z,y)|™)

e HOMOTOPIC METHOD
The vector fields F and F' + w are €* conjugate if the homological equation

[F+ 7w, Z;] =w

has a €% solution Z..
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Sketch of the proof of Theorem 1

e EXISTENCE AND REGULARITY

There exists N = N(k, F') such that if w is N-flat then the homological
equation [F + 7w, Z,] = w has a a €* solution Z,.
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Sketch of the proof of Theorem 1

e EXISTENCE AND REGULARITY
There exists N = N(k, F') such that if w is N-flat then the homological
equation [F + 7w, Z,] = w has a a €* solution Z,.

e DELICATE POINT
How is the dependence of N (k, XN ') with respect to the original X?

Roussarie works with £ = N = o0 and his proof applies when k is finite but in
that case N(z, X) depends on | X|. This is a problem if the norm of X grows
along the process of annihilation of non-resonant monomials.
II'yashenko-Yakovenko do not pay too much attention to this point.

Samovol shows that N(k, F) depends on k and the linear part of F', which
remains fixed along all the process.
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Preliminary results

Lemma (Teyssier 2004)

Let ¢, (t;2,y) be the flow of X,, and consider any function F' with F(0,0) = 0.

Then @, (z,y):= pu(F(x,y);x,y) is a family of local diffeomorphisms with
®,,(0,0) = 0 such that

@) (i) = Ty e
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Preliminary results

Recall that Y, = 1 X, where X, is a € unfolding of a saddle.

Given a function f with £(0,0) = 0 there exists a family of local diffeomorphisms
®,, with ®,(0,0) = 0 such that

1

((I)u)*(yu) = HX—M

X, onxy # 0.

In fact @,(z,y):= ¢.(F(x,y);z,y) where F'is defined implicitly by

F(z,y)

vf(z,y) = Jo vopu(t;z,y)dt.

Notation: (I)” = (I)[Y;u fu]
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Preliminary results

Theorem 3

Fix po € U and set A\g = A(uo). For any k € N there exists N = N(k, )\O,m,n)
such that if {h,} is a €~ family of N-flat functions then the homological
equation

X,(vf,) = vhy

has a €* family of solutions {f,,} defined in a neighbourhood of
(0,0, o) e R2xU.
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Preliminary results

Theorem 3

Fix po € U and set A\g = A(uo). For any k € N there exists N = N(k, )\O,m,n)
such that if {h,} is a €~ family of N-flat functions then the homological
equation

X,(vf,) = vhy
has a €* family of solutions {f,,} defined in a neighbourhood of
(0,0, 110) € R2xU. More precisely, we can take N (k, \g, m,n) as

2 [max{(vo + 1)k —m + Xon, (vo/Xo + 1)k +m/Ao — n} + 1],

where vy = max{1, Ao} and [ -] denotes the integer part.
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Sketch of the proof of Theorem 3

o ANSATZ FOR X (F)=H
Let ¢; be the flow of X. If

0
F(x,y) = Hop(t;x,y)dt

+oo

is a well-defined smooth function then it is a solution of the homological
equation X(F) = H. Indeed

0
X(F) 4 H oy, 0 p,dt

S
ds +o0

= i Hop,dr

=H
s=0 ds +oo

s=0
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Sketch of the proof of Theorem 3

o ANSATZ FOR X (F)=H
Let ¢; be the flow of X. If

0
F(x,y) = Hop(t;x,y)dt

+oo

is a well-defined smooth function then it is a solution of the homological
equation X(F) = H. Indeed

S

d
= — Hop,dr
ds +oo

0
X(F) 4 H oy, 0 p,dt

= =H
ds +o0

s=0

s=0

We want to find f such that X (vf) = vh with v = 2™y™, m,n € Z, and a
given N-flat function h.

Without loss of generality we can consider XNV = 20, + (—=A(u) + P,(u))ydy
instead of X.
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Sketch of the proof of Theorem 3

o GLOBALIZATION
Take a € bump function 9. : R — [0, 1] such that ¥.(p) = 1 if |p| < /2,
Ye(p) = 0if [p| > € and [Dipc| < c/e.
Define X, := 0, + (—Xo + P-(z,y))yd, where P.:= (A\g — A + P)1..

X coincides with X¥¥" on D, /5(0) and is linear outside D.(0). So its flow ¢f
is globally defined.

Replace h by the global function hi)., which is also N-flat, and consider the
homological equation X, (vf.) = vhe.
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Sketch of the proof of Theorem 3

o GLOBALIZATION
Take a € bump function 9. : R — [0, 1] such that ¥.(p) = 1 if |p| < /2,
Ye(p) = 0if |p| = € and | Die| < ¢/e.
Define X, := 0, + (—Xo + P-(z,y))yd, where P.:= (A\g — A + P)1..
X coincides with X¥¥" on D, /5(0) and is linear outside D.(0). So its flow ¢f
is globally defined.
Replace h by the global function hi)., which is also N-flat, and consider the
homological equation X, (vf.) = vhe.

e DECOMPOSITION OF THE DISCREPANCY
Since h. is N-flat, setting M = [N /2], we can write he = hy + ho with Ay
M-flat with respect to x and ho M-flat with respect to .
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Sketch of the proof of Theorem 3

e Thus the homological equation writes as X.(vf:) = vhy + vhg, which lead us
to choose f. such that

0 0
ofien) = [ @h)opitnpde+ | (oha)opu(ta gt

+0o0

where ¢, is the (complete) flow of X_.
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Sketch of the proof of Theorem 3

e Thus the homological equation writes as X.(vf:) = vhy + vhg, which lead us
to choose f. such that

0 0
ofien) = [ @h)opitnpde+ | (oha)opu(ta gt
— +o0
where ¢, is the (complete) flow of X_.
o L(vop.) = (vop:)(m—An+nP-(p.)), that yields

t
! OULPE = e(m—)\gn)t €xp (nJ. Pa((Pa(S))d‘S)
0
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Sketch of the proof of Theorem 3

e Thus the homological equation writes as X.(vf:) = vhy + vhg, which lead us
to choose f. such that

0 0
ofien) = [ @h)opitnpde+ | (oha)opu(ta gt

+0o0

where ¢, is the (complete) flow of X_.

d
® @t

G(wope) = (vop:)(m— Agn + nP:(p:)), that yields

t
! OU@E = e(m—)\on)t €xp (nJ. Pa(@a(s))d8>
0

0 0
o Thus f.(z,y,p) = f Ii (2, y, p, t)dt + f Z5 (2, y, p, t)dt with
-

+00

t
I (p,t, ) i= M (B 0 o (tp, 1)) exp <n f P-(¢e(s;p, u))dS)
0
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Sketch of the proof of Theorem 3

Next we bound the derivatives of ZF (xz,y, u,t) with respect to z, y and p using

e Multivariate version of the chain rule with higher derivates
e Gronwall's Lemma

e Flatness properties of h;

to show that, for u ~ o and € ~ 0, 0*Z% and 0YZ5 are integrable with respect
to t on (—o0,0) and (0,+0) respectively. Then we conclude by applying the
Dominated Convergence Theorem.
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Sketch of the proof of Theorem 3

Setting Vs = R* x {|u — po| < &}, we have the estimates | P ||y, < n(

€,0) and
DX lvs < v(e,8) where i and v are continuous functions with 7(0,0) = 0 and
v(0,0) = vy = max{1, A\g}. Then, for 0 <1i <k,

01T (@, y, 1, D) < KM et
with a1:= M — (v + 1)k — |n|n +m — A(u)n
1015 (2, y, 1. t)| < Ky ™ Fee!
with ag:= =AM + (n + Xo)k + (|n] = M + k)n+m — A(u)n
Thanks to N > N(k, Ao, m,n), we get a3 > 0 and as < 0 for (¢,6) ~ (0,0).
|
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Temporal normal form

Theorem A

Fix po € U and set \g = A(uo). Then for any k € N the family {Y,},cv is €%
conjugate in a neighbourhood of (0,0, 19) € R2x U to

1

where
(a) if Ao ¢ Q then P, =Q, =0,

(b) if Ao = p/q with ged(p, q) = 1 then P, and @, are polynomials in the
monomial u = zPy? and ¢ = min{ﬁ eZ:B(p,q) = (m, n)}
Moreover in case that X, has orbital codimension x < o0 then deg P, < 2k
and deg @, < k£ —min(4, 1).
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Sketch of the proof of Theorem A

e Fix ke Nand pp € U, and let N = (k, A\g, m, m) be the integer given by
Theorem 1. Take s > N. Then there exists a ¥° diffeomorphism @2 such that

NF
X

V= () 00 = T Ry

I I3

where XliVF =20y + (—A(1) + Pyu(u))ydy and R,(0,0) = 0.
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Sketch of the proof of Theorem A

e Fix ke Nand pp € U, and let N = (k, A\g, m, m) be the integer given by
Theorem 1. Take s > N. Then there exists a ¥° diffeomorphism @2 such that
1 X"

V= () 00 = T Ry

n "
where XliVF =20y + (—A(1) + Pyu(u))yd, and R, (0,0) = 0.
o By Lemma 2, if &, := ®[Y,!, f1] then

(@1)°07) = N -
v(1+ Ru(z,y)) + XNE(fL)

JORDI VILLADELPRAT (URV) Normal forms and Dulac time BCN 2018



Sketch of the proof of Theorem A

e Fix ke Nand pp € U, and let N = (k, A\g, m, m) be the integer given by
Theorem 1. Take s > N. Then there exists a ¥° diffeomorphism @2 such that
1 X"

V= () 00 = T Ry

n "
where XliVF =20y + (—A(1) + Pyu(u))yd, and R, (0,0) = 0.
o By Lemma 2, if &, := ®[Y,!, f1] then

(@1)°07) = N -
v(1+ Ru(z,y)) + XNE(fL)

o Since XNF(2%y") = (a — Xob) 2"y’ + bP,, (u)z*y", u‘R[u] is a supplementary
subspace of the image of XV in vR[z,y].
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Sketch of the proof of Theorem A

e Fix ke Nand pp € U, and let N = (k, A\g, m, m) be the integer given by
Theorem 1. Take s > N. Then there exists a ¥° diffeomorphism @2 such that
1 X"

V= () 00 = T Ry

n "
where XliVF =20y + (—A(1) + Pyu(u))yd, and R, (0,0) = 0.
o By Lemma 2, if &, := ®[Y,!, f1] then

XNF
)= v(1+ Ru(z,y)) + XNF(ufl)’

(@) (Y,

o Since XNF(2%y") = (a — Xob) 2"y’ + bP,, (u)z*y", u‘R[u] is a supplementary
subspace of the image of XV in vR[z,y].

o Take f} € R[x,y] such that vR,(z,y) + XN (vf}) = w'Qu(u) — vhy(z,y)
for some polynomial @, (u) and some s-flat function h,(z,y).
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Sketch of the proof of Theorem A

e Thus
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Sketch of the proof of Theorem A

e Thus NF
Xu

T wfQp(u) — vhy(z,y)

e By Theorem 3, thanks to s > N, there exists a €’* function fﬁ such that
Xf)”’(vfﬁ) = vhy,.
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Sketch of the proof of Theorem A

e Thus N
Xu

Tt wfQp(u) — vhy(z,y)

e By Theorem 3, thanks to s > N, there exists a €’* function fﬁ such that
Xf)”’(vfﬁ) = vhy,.
o We take @i:z @[Yf,fﬁ] and then by Lemma 2
NF NF
Xu Xy

V= (20) (V) = v+ ufQu(u) — vhy(z,y) + XNF(uf2) ~ v+ ufQy(u)
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Sketch of the proof of Theorem A

e Thus N
Xu

Tt wfQp(u) — vhy(z,y)

e By Theorem 3, thanks to s > N, there exists a €’* function fﬁ such that
Xf)”’(vfﬁ) = vhy,.
o We take @i:z @[Yf,fﬁ] and then by Lemma 2

NF NF
Xu XM

v+ utQu(u) — vhy(x,y) + XNF(vf2) v+ ufQu(u)

Vi (00) (V) =

e Assume now = codim X,,, = ord,—o Py, < . We take ®3 := ®[Y?, f7]
with f2 so that

NF
Xy

()" 050 = ) 7 XD

I
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Sketch of the proof of Theorem A

e Observe that if u*|7,(u) then fi(x,y) = 7u(u)/v is regular at the origin and
XN () = 7/ (Wulp — Mp)q + Pu(u)).
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Sketch of the proof of Theorem A

e Observe that if u*|7,(u) then fi(x,y) = 7u(u)/v is regular at the origin and
XN () = 7/ (Wulp — Mp)q + Pu(u)).

o By the Weierstrass Preparation Theorem there exists B, € R[u] of degree < x
such that p — A(p)g + P, (u) = Au(uw)By(u) with A,,(0) # 0. Thus

3\*y3 lelVF
(2 00) = G, + w0 A B
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Sketch of the proof of Theorem A

e Observe that if u*|7,(u) then fi(x,y) = 7u(u)/v is regular at the origin and
XN () = 7/ (Wulp — Mp)q + Pu(u)).

o By the Weierstrass Preparation Theorem there exists B, € R[u] of degree < x
such that p — A(p)g + P, (u) = Au(uw)By(u) with A,,(0) # 0. Thus

3\*y3 Xl]tVF
(2 00) = G, + w0 A B

I ) —1 ) T )
o If ufQ,(u) = Y ai(p)u?, set Si(u) = 3 a;u’ and Sy = Y. a;u’, so that
it i=t i=0

u'Q, +ur'A B, = Si + So +ur’A,B,
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Sketch of the proof of Theorem A

e Observe that if u*|7,(u) then fi(x,y) = 7u(u)/v is regular at the origin and
XN () = 7/ (Wulp — Mp)q + Pu(u)).

o By the Weierstrass Preparation Theorem there exists B, € R[u] of degree < x
such that p — A(p)g + P, (u) = Au(uw)By(u) with A,,(0) # 0. Thus

NF
Xy

3\ * 3\
(2 00) = G, + w0 A B

r . —1 i T .
o If ufQ,(u) = Y ai(p)u?, set Si(u) = 3 a;u’ and Sy = Y. a;u’, so that
it i=t i=0
u'Q, +ur'A B, = Si + So +ur’A,B,

e Put v = max{/, 1} and consider the polynomial division S5 = u”B,,C,, + R,
with deg R < v + k — 1. Hence

u'Q, +ur’A,B, = S, +u'B,C, + R, +ur'A,B,
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Sketch of the proof of Theorem A

e The equality
ueQu +ur'A B, =5 +u'B,Cy, + R, +ur'A,B,

leads us to define

_ “ 1,710/,1,(5)
ru() = L e Qg

which is a smooth function at (u, 1) ~ (0, f10) because A,,(0) # 0 and v > 1.
Moreover it verifies u’|7,(u) as desired due to v > .
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Sketch of the proof of Theorem A

e The equality

ueQu +ur'A B, =5 +u'B,Cy, + R, +ur'A,B,

leads us to define N 0. (6)
_ v—1

which is a smooth function at (u, 1) ~ (0, f10) because A,,(0) # 0 and v > 1.
Moreover it verifies u’|7,(u) as desired due to v > .

We get
NF
Xy
v+ S1(u) + R(u)
and by construction S1(u) + R(u) = u‘Q,,(u) with a polynomial Q,, of degree
Kk —min(¢, 1).

(®3)" (i) =
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ASYMPTOTIC EXPANSION
OF THE DULAC TIME



The Dulac time

We consider a € unfolding of a saddle point at the origin with poles along one
of its separatrices. More precisely, setting fi:= (A, u) € W:= (0, 4+00)x W with W
an open set of RY | let us take the family of vector fields {Yﬂ}ﬂetfv with

1 R X
Yi(z,y):= v (xP(x, Yi 1)0x + yQ(x, y; u)5y>,

where

e neZy:=Nu{0},

e P and @ belong to ‘ﬁ“o(VxW) for some open set V of R? containing the
origin,

o P(x,0; ) > 0 and Q(0,y; /i) <0 for all (,0),(0,y) eV and ie W,

_ _ Q(0,0:1)
* A=~ Foon
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The Dulac time

Yy
IO
o 0  R(s)
o(-.0(s))
T(R(s)) = (p(T(s),U(s))
T
/

The Dulac time T'(-; /i) between the transverse sections ¥, and X..
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The Dulac time

e The function defined for s > 0 and « € R by means of

3*2—1 if av # 0,
w(s;a) = :
—logs ifa=0,

is called the Ecalle-Roussarie compensator.
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The Dulac time

e The function defined for s > 0 and « € R by means of

{ 3*2—1 if a # 0,

wisia) = —logs ifa=0,

is called the Ecalle-Roussarie compensator.

e We denote by Zy (U) the set of € functions h(s; i) defined on (0,¢)x U, for
some € > 0, such that ‘
lim D h(s; i) = 0,
s—0

uniformly on compacts sets of U, for all j = 0,1,..., K where Z:= s0;.
We write f € Zo,(U) if f € Zg(U) for all K € Z,..
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The Dulac time

o We say that {Yj,},y;, verifies the family linearization property (FLP) if there

exist an open set U < R? containing the origin and a €® diffeomorphism
O: UxW — V xW of the form ®(z,y; i) = (z + h.o.t,y + h.o.t; i) that, for
each fi, conjugates Y}; with

1

m(ﬁax - /\yay)

where f € €°(U xW).
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The Dulac time

o We say that {Yj,},y;, verifies the family linearization property (FLP) if there
exist an open set U < R? containing the origin and a €® diffeomorphism
O: UxW — V xW of the form ®(z,y; i) = (z + h.o.t,y + h.o.t; i) that, for
each fi, conjugates Y}; with
1

(@0 — A\y0
Ty 0 )
where f € €°(U xW).

e In what follows we denote A, :=Z, x ({0} U Zs,,) and, for any A and L
positive real numbers, we define

B =1{(i,j) e N i+ Nj <L}
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The Dulac time

A
VAN
B ’ . ’ i+Aj=L
n + 2 . ° . \‘\‘ ) . .
n+1 o o . d\ . .
n AY
12 3 N
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The Dulac time

Theorem B

Assume that {Yj;},_y; verifies the FLP. Let T'(-; i) be the Dulac time between
the transverse sections ¥, and ¥ and fix A\g > 0. For each (i,5) € A,, there exist
a neighbourhood I, of Ao and a polynomial P,°(z; i) € €% (I} x W)[2]
satisfying the following properties:
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The Dulac time

Theorem B

Assume that {Yj;},_y; verifies the FLP. Let T'(-; i) be the Dulac time between
the transverse sections ¥, and ¥ and fix A\g > 0. For each (i,5) € A,, there exist
a neighbourhood I, of Ao and a polynomial P,°(z; i) € €% (I} x W)[2]
satisfying the following properties:
(a) If Ao ¢ Q then deg, P)(2; 1) = 0 and, otherwise, if Ao = p/q with

ged(p, ¢) = 1, then

(1) deg. P (2 ) < i/p,

(2) degZP (z; 1) = 0if 7 =0 and ig < np,

(3) P>‘°( ft) = 0 if there exists r € N such that (i + rp, j — rq) € A,,.
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The Dulac time

(b) For each L > 0 there exists a neighbourhood Iz\o of Ag such that, for s > 0
small enough and [ € IL\O x W,

T(s;) = Ao(N)logs + >, PP (w(sia);i)s™ + R(s; ),
(i’j)e'%)\o,L

where Ag(A) =0 if ne N and Ap(A) = —1/A if n =0, and

B 0 if Ao ¢ Q,
T AU p—Ag ifA= p/q with ged(p, q) = 1,
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The Dulac time

(b) For each L > 0 there exists a neighbourhood Iz\o of Ag such that, for s > 0
small enough and [ € IL\O x W,

T(s;) = Ao(N)logs + >, PP (w(sia);i)s™ + R(s; ),
(i’j)e'%)\o,L

where Ag(A) =0 if ne N and Ap(A) = —1/A if n =0, and

B 0 if Ao ¢ Q,
T AU p—Ag ifA= p/q with ged(p, q) = 1,

and the remainder writes as R(s; 1) = s U (s; 1) with ¥ € Z. (I;° x W).
Moreover, in a neighbourhood of {0} x I}° x W, R(s; ji) extends to a €'/
function which is | L|-flat with respect to s at s = 0.
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Where do the compensators come from?

U
S dxr
Tr(s) = f (y +“6Qn(“))fy:6<s/x>k T
l+m € dx
=co+ 18" + Z dk—fsquj x(p—)\Q)k;
k=t s
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Where do the compensators come from?

The monomials s7721 and 521272 are 7t

not well ordered if 71 + AoJ1 = 12 + AgJo,
which implies \g € Q and

(i1,71) = (i2,j2) + r(p, —q)

for some r € Z and Ao = p/q with
ged(p, q) = 1. Then

g2 T2 — ghit A g—r(p—Aa)

= 51N 4 aw(s; )" n

with o = p — Aq because recall that

w(s;a) = % for a # 0.

1 2 Ny
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The Dulac time

e If f(s;v) and g(s;v) are defined on (0,¢) x U for some open set U of RY and
e > 0, we write f <,, g in case that

g(s;v)

lim =0.
(s,)—(0,00) f(850)

Observe that this is a strict partial order.
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The Dulac time

e If f(s;v) and g(s;v) are defined on (0,¢) x U for some open set U of RY and
e > 0, we write f <,, g in case that

g(s;v)

lim =0.
(s,)—(0,00) f(850)

Observe that this is a strict partial order.

o If Ao € Q with \g = p/q then
s”’\jwk(s;p —Aq) <x si/”‘j,wk/(s;p )

in case that i + \gj <4’ + Aoy’ or {i =4, j =74 and k > K'}.
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The Dulac time

Theorem B provides the (ordered) list of monomials that can appear in the asymp-
totic development of T'(-;u) near s = 0. Indeed, in case that )\ € Q, condi-
tion (a3) implies that if P;}O and Pf,‘;, are not identically zero then

i+ Xoj #= i + Xoj’

In its turn this implies that <), is a strict total order among the monomials
s+t Mk (s;p — Aq) that appear in the development.
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The Dulac time

Theorem B provides the (ordered) list of monomials that can appear in the asymp-
totic development of T'(-;u) near s = 0. Indeed, in case that )\ € Q, condi-
tion (a3) implies that if P;;O and Pf,‘;, are not identically zero then

i+ Xoj #= i + Xoj’

In its turn this implies that <), is a strict total order among the monomials
s+ NF(s;p — Aq) that appear in the development. Setting

£
Pl\o 3 p Z ik ()2 WlthA”kecgw(I;‘j‘)xW)’

let {Aq}aen be the sequence of coefficients A, (re)labelled according the position
of 57N wF(s;p — Aq) in the list of monomials ordered with respect to <y, .
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The Dulac time

e Consider fig = (Ao, o) € (0, +00) x W and let {A,},>2 be the previous
sequence of coefficients according to <,,. We define

Lo :=min{r > 2 : A (fig) # 0} — 2.
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The Dulac time

e Consider fig = (Ao, o) € (0, +00) x W and let {A,},>2 be the previous
sequence of coefficients according to <,,. We define

Lo :=min{r > 2 : A (fig) # 0} — 2.

o Let h(s; /1) be a € function on (0,&) x W for some & > 0. Given any fig € U
we define Zy(h(-; ), fio) to be the smallest integer N having the property that
there exist § > 0 and a neighbourhood V' of fig such that for every i € V the
function h(s; i) has no more than N zeros on (0,0) counted with multiplicities.
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The Dulac time

Suppose that {Yﬂ}ﬂew is a family of vector fields with n € N and verifying the
FLP. Let T'(-; 1) be the Dulac time between the transverse sections ¥, and X,
and fix some fiy € W. If £, is finite then Zo(T"(-; 1), f10) < Lpg-
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Critical periodic orbits

e A singular point p of a smooth differential system is a center if it has a
punctured neighbourhood that consists of periodic orbits surrounding p. The
largest punctured neighbourhood with this property is called the period annulus
of the center and it will be denoted by &. Henceforth 0.7 will denote the
boundary of & after embedding it into RP?. Clearly the center p belongs to
0, and in what follows we will call it the inner boundary of the period
annulus. We also define the outer boundary of the period annulus to be
II:= 02\{p}. Note that I is a non-empty compact subset of RP?.
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Critical periodic orbits

e A singular point p of a smooth differential system is a center if it has a
punctured neighbourhood that consists of periodic orbits surrounding p. The
largest punctured neighbourhood with this property is called the period annulus
of the center and it will be denoted by &. Henceforth 0.7 will denote the
boundary of & after embedding it into RP?. Clearly the center p belongs to
0, and in what follows we will call it the inner boundary of the period
annulus. We also define the outer boundary of the period annulus to be
II:= 02\{p}. Note that I is a non-empty compact subset of RP?.

e The period function of the center assigns to each periodic orbits in & its
period. To study its qualitative properties usually the first step is to
parametrize this set. This can be done by taking a smooth transverse section
to the vector field on &2, for instance an orbit of the orthogonal vector field. If
{7Vs}se(0,1) is such a parametrization, then s — P(s):= {period of v} is a
smooth map that provides the qualitative properties of the period function that
we are interested in.
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Critical periodic orbits

e The critical periods are isolated critical points of P, i.e. § € (0, 1) such that
P'(s) = as — §)* + o((s — 8)*) with a # 0 and k > 1. In this case we shall
say that ~y; is a critical periodic orbit of multiplicity k& of the center.
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Critical periodic orbits

e The critical periods are isolated critical points of P, i.e. § € (0, 1) such that
P'(s) = as — §)* + o((s — 8)*) with a # 0 and k > 1. In this case we shall
say that ~y; is a critical periodic orbit of multiplicity k& of the center.

o Consider a € family {X,},cp of planar polynomial vector fields with a center
and fix some vy € U. Suppose that the outer boundary of the period annulus
varies continuously at vy € U, meaning that for any € > 0 there exists § > 0
such that dg(I1,,I1,,) < e for all v € U with |v — 1y|| < §. Then, setting

N(0,e) = sup {# critical periodic orbits y of X, in 2,
with dg (v,10,,) <€ and v — 1o < 6},

the criticality of (II,,, X,,) with respect to the deformation X, is

Crit((HVO,X o)s Xl,):= iglfN(é,g).
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A criticality result

Using a result of [Marde3i¢ and Saavedra, 2007] we obtain the following result
which can be thought as the time counterpart of the finite cyclicity for a separatrix
loop of a hyperbolic saddle ([Leontovich 1951], [Roussarie 1986] and [Yakovenko
and IlI'yashenko 1991]):
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A criticality result

Using a result of [Marde3i¢ and Saavedra, 2007] we obtain the following result
which can be thought as the time counterpart of the finite cyclicity for a separatrix
loop of a hyperbolic saddle ([Leontovich 1951], [Roussarie 1986] and [Yakovenko
and IlI'yashenko 1991]):

Corollary C

Consider a €® family of symmetric planar polynomial vector fields {X,},cy with
a center laying in the symmetry axis. Suppose moreover that the outer boundary
IT, of its period annulus varies continuously and has only two singular points,
which are hyperbolic saddle points verifying the FLP and not laying in the
symmetry axis. Fix any vy € U.
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A criticality result

Using a result of [Marde3i¢ and Saavedra, 2007] we obtain the following result
which can be thought as the time counterpart of the finite cyclicity for a separatrix
loop of a hyperbolic saddle ([Leontovich 1951], [Roussarie 1986] and [Yakovenko
and IlI'yashenko 1991]):

Corollary C

Consider a €® family of symmetric planar polynomial vector fields {X,},cy with
a center laying in the symmetry axis. Suppose moreover that the outer boundary
IT, of its period annulus varies continuously and has only two singular points,
which are hyperbolic saddle points verifying the FLP and not laying in the
symmetry axis. Fix any vy € U. Then, if the center of X, is non isochronous, the
criticality of its outer boundary II,,, with respect to X,, is finite.
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A criticality result

Using a result of [Marde3i¢ and Saavedra, 2007] we obtain the following result
which can be thought as the time counterpart of the finite cyclicity for a separatrix
loop of a hyperbolic saddle ([Leontovich 1951], [Roussarie 1986] and [Yakovenko
and IlI'yashenko 1991]):

Corollary C

Consider a €® family of symmetric planar polynomial vector fields {X,},cy with
a center laying in the symmetry axis. Suppose moreover that the outer boundary
IT, of its period annulus varies continuously and has only two singular points,
which are hyperbolic saddle points verifying the FLP and not laying in the
symmetry axis. Fix any vy € U. Then, if the center of X, is non isochronous, the
criticality of its outer boundary II,,, with respect to X, is finite. More concretely,
Crit ((My,, Xu,), X») < €y, — 1, where £, is the integer computed from the
Dulac time between two transverse sections laying on the symmetry axis.
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