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Arnold example The origin

In 1964, V.I. Arnold proposed an example of a nearly-integrable
Hamiltonian with 2 + 1/2 degreees of freedom

H(q, p, ϕ, I , t) =
1

2

(
p2 + I 2

)
+ ε(cos q − 1) (1 + µ(sinϕ+ cos t)) ,

and asserted that given any δ,K > 0, for any 0 < µ� ε� 0, there exists
a trajectory of this Hamiltonian system such that

I (0) < δ and I (T ) > K for some time T > 0.

Notice that this a global instability result for the variable I , since

İ = −∂H
∂ϕ

= −εµ(cos q − 1) cosϕ

is zero for ε = 0, so I remains constant, whereas I can have a drift of
finite size for any ε > 0 small enough.
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Arnold example KAM theorem

Arnold’s Hamiltonian can be written as a nearly-integrable with 3 degrees
of freedom

H∗(q, p, ϕ, I , s,A) =
1

2

(
p2 + I 2

)
+ A + ε(cos q− 1) (1 + µ(sinϕ+ cos s)) ,

which for ε = 0 is an integrable Hamiltonian h(p, I ,A) = 1
2

(
p2 + I 2

)
+ A.

Since h satisfies the (Arnold) isoenergetic nondegeneracy∣∣∣∣ D2h Dh
Dh> 0

∣∣∣∣ = −1 6= 0

By the KAM theorem proven by Arnold in 1963, the 5D phase space of H
is filled, up to a set of relative measure O(

√
ε) , with 3D-invariant tori Tω

with Diophantine frequencies ω = (ω1, ω2, 1):

|k1ω1 + k2ω2 + k0| ≥ γ/|k |τ for any 0 6= (k1, k2, k0) ∈ Z,

where γ = O(
√
ε), and τ ≥ 2.
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Arnold example Orbits between KAM tori

Figure: a): 2D tori separate a 3D phase space. b) 3D tori do not separate a 5D
phase space

Since the 3D KAM invariant tori do not separate the 5D phase space,
there can exist irregular orbits ‘traveling’ between tori. Arnold conjectured
in the KAM theorem in 1963 that this was the general case.
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Integrable Hamiltonian sytems Action-angle variables

The unperturbed rôle is played by a (completely) integrable Hamiltonian
with n degrees of freedom. The Liouville–Arnold theorem establishes,
under certain hypotheses, the existence on some region of the phase space
of canonical action–angle variables (ϕ, I ) = (ϕ1, . . . , ϕn, I1, . . . , In) in
Tn × G ⊂ Tn × Rn, in which the Hamiltonian only depends on the action
variables: h(I ). The associated Hamiltonian equations for a trajectory
(ϕ(t), I (t)) are

ϕ̇ = ω(I ), İ = 0,

where ω = ∂Ih. Hence the dynamics is very simple: every n-dimensional
torus I = constant is invariant, with linear flow ϕ(t) = ϕ(0) + ω(I )t, and
thus all trajectories are stable. The motion on a torus is called
quasiperiodic, with associated frequencies given by the vector
ω(I ) = (ω1(I ), . . . , ωn(I )).
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Integrable Hamiltonian sytems resonant and non-resonant tori

Every n-dimensional invariant torus can be non-resonant or resonant,
according to whether its frequencies are rationally independent or not. A
non-resonant torus is densely filled by any of its trajectories. On the other
hand, a resonant torus is foliated into a family of lower dimensional tori.

Figure: Non-resonant 2D Torus
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Nearly-Integrable Hamiltonian KAM theorem

A nearly-integrable Hamiltonian can be written in the form

H(ϕ, I ) = h(I ) + εf (ϕ, I ), (1)

where ε is a small perturbation parameter. Then the Hamiltonian
equations are

ϕ̇ = ω(I ) + ε∂I f (ϕ, I ), İ = −ε∂ϕf (ϕ, I ).

For non-resonant, even more, Diophantine frequencies, KAM theorem
provides n-dimensional invariant tori. For resonant frequencies there
appear, typically, lower dimensional invariant tori, which are of saddle type,
and that were called whiskered tori by Arnold because they have
associated unstable and stable invariant manifolds.
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Nearly-Integrable Hamiltonian Nekhoroshev theorem

Nekhoroshev theorem, first stated in 1977, establishes Effective stability
for all the trajectories of a steep nearly-integrable system: For every initial
condition (ϕ(0), I (0)) one has an estimate of the type

|I (t)− I (0)| ≤ r0 ε
b for |t| ≤ T0 exp {(ε0/ε)a} .

The constants a, b > 0 are called stability exponents.
If h is quasiconvex, that is, for any I ∈ G and v ∈ Rn,

Dh(I )v = 0 and v 6= 0 =⇒ v>D2h(I )v 6= 0.

a = b = 1
2n .
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Arnold example again Nekhoroshev estimates

H∗(q, p, ϕ, I , s,A) =
1

2

(
p2 + I 2

)
+ A + ε(cos q− 1) (1 + µ(sinϕ+ cos s)) ,

Since h(p, I ,A) = 1
2

(
p2 + I 2

)
+ A satisfies

∣∣∣∣ D2h Dh
Dh> 0

∣∣∣∣ = −1 < 0, one

can check that h is quasiperiodic, and a priori

|(p, I ,A)(t)− (p, I ,A)(0)| ≤ r0 ε
1/6 for |t| ≤ T0 exp

{
(ε0/ε)1/6

}
.

A refinement [Pöschel93, D-Gutiérrez96] for orbits close to the single
resonance p = 0, using resonant normal forms, gives

|I (t)− I (0)| ≤ r0 ε
1/4 for |t| ≤ T0 exp

{
(ε0/ε)1/4

}
.

Amadeu Delshams (UPC) Arnold diffusion for dummies October 4th, 2017 9 / 79



Single resonance normal form Taylor expanding in I ∈ Rn+1

For a nearly-integrable Hamiltonian with n + 1 degrees of freedom

H(ϕ, I ) = h(I ) + εf (ϕ, I ), (ϕ, I ) ∈ Tn+1 × Rn+1

Select I ∗ = 0, and assume that the associated frequency vector
λ∗ = ∂Ih(0) ∈ Rn+1 has a single resonance: 〈k∗, λ∗〉 = 0 for some
0 6= k∗ ∈ Zn+1 and 〈k, λ∗〉 6= 0 for any k ∈ Zn+1 not co-linear to k∗.
By a classical algebraic result, we can assume λ∗ of the form

λ∗ = (0, ω∗) ,

where ω∗ ∈ Rn is non-resonant. (In fact, we shall assume a Diophantine
condition on ω∗ to apply later on KAM theorem).
The unperturbed Hamiltonian can be written (up to a constant) as:

h(I ) = 〈λ∗, I 〉+
1

2
〈QI , I 〉+ O3(I ).

Amadeu Delshams (UPC) Arnold diffusion for dummies October 4th, 2017 10 / 79



Single resonance normal form Split ϕ→ (q, ϕ), I → (p, I )

Replace ϕ→ (q, ϕ) and I → (p, I ), and thus split (ϕ, I ) ∈ Tn+1 ×Rn+1 as
(q, p, ϕ, I ) ∈ T× R× Tn × Rn, and the matrix Q = ∂ 2

I h(0) as

∂ 2
p,Ih(0) =

(
β2 λ>

λ Q

)
,

where we have put β2 > 0 in order to fix ideas, λ ∈ Rn is a shift vector,
and the new matrix Q is n × n. We will assume β = 1; this can be
achieved replacing p, I by p/β, I/β (changing in this way the time scale
by a factor β), and rewriting ω∗/β, λ/β2, Q/β2 as ω∗, λ, Q respectively,
and redefining also the function f .
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Single resonance normal form Designing one step

Then, we can write our Hamiltonian in the form

H(q, p, ϕ, I ) = h(p, I ) + εf (q, p, ϕ, I ),

h(p, I ) = 〈ω∗, I 〉+
p2

2
+ 〈λ, I 〉 p +

1

2
〈QI , I 〉+ O3(p, I ).

We now perform one step of resonant normal form procedure: following
the Lie method, we seek for functions S(q, ϕ) and R(q, p, ϕ, I ) = O(p, I )
such that

{S , h}+ V + R = f , (2)

where V (q) is the periodic function obtained by averaging f (q, 0, ϕ, 0)
with respect to the angles ϕ:

V (q) = f (q, 0, ·, 0) =
1

(2π)n

∫
Tn

f (q, 0, ϕ, 0)dϕ, q ∈ T.
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Single resonance normal form Implementing one step

The construction of S and R is easily carried out: one first solves the
equation

〈ω∗, ∂ϕS〉+ V = f (·, 0, ·, 0)

with the help of standard small divisors estimates, and then one takes R
simply by fitting equation (2). The time-1 symplectic flow Φ of the
generating Hamiltonian εS leads to

H ◦ Φ = H + {H, εS}+ O
(
ε2
)

= h + ε(V + R) + O
(
ε2
)

= H0 + H1,

with

H0(q, p, I ; ε) = 〈ω∗, I 〉+
p2

2
+ εV (q) + 〈λ, I 〉 p +

1

2
〈QI , I 〉 ,

H1(q, p, ϕ, I ; ε) = εR(q, p, ϕ, I ) + O3(p, I ) + O
(
ε2
)
.

Note: ω∗ = λ = 0, V (q) = cos q − 1, H1 = O(εµ) in the Arnold example.
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Single resonance normal form Relation with Arnold example

This expression generalizes Arnold’s example.
Concerning V , except for degenerate cases, the function V (q) will have a
unique and nondegenerate maximum q0; we denote α2 = −V ′′(q0) > 0.
Then, for ε > 0, the 1-degree-of-freedom Hamiltonian

P(q, p; ε) =
p2

2
+ εV (q),

has a saddle point in (q0, 0), with (homoclinic) separatrices. The case
ε < 0 is analogous, provided one considers a minimum instead of a
maximum. Then, the Hamiltonian H0 has whiskered tori with coincident
whiskers associated to this saddle point.
Note that H0 constitutes a Hamiltonian situated between the unperturbed
Hamiltonian h and the perturbed one H, which possesses hyperbolic
invariant tori but their whiskers still coincide.
Note also that, in general, H0 is not an uncoupled Hamiltonian because of
the coupling term 〈λ, I 〉 p.
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Single resonance normal form Introducing µ =
√
ε

The Lyapunov exponents of the saddle point of the “pendulum” P are
±
√
εα, which tend to zero for ε→ 0+.

To have fixed Lyapunov exponents, we can replace p, I by
√
εp,
√
εI .

The new system is still Hamiltonian if we divide the Hamiltonian by ε
(making in this way a change of time scale by a factor

√
ε):

H0 = 〈ω, I 〉+
p2

2
+ V (q) + 〈λ, I 〉 p +

1

2
〈QI , I 〉 , (3)

H1 = R
(
x ,
√
εy , ϕ,

√
εI
)

+
1

ε
O3

(√
εy ,
√
εI
)

+ O (ε) = O(µ), (4)

where

ω =
ω∗√
ε
, µ =

√
ε.
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Hyperbolic Hamiltonians Regular and singular case

For ε→ 0+, the study of the Hamiltonian (3–4) is a singular perturbation
problem, due to the fast frequencies ω = ω∗/

√
ε in the unperturbed

Hamiltonian H0. We are thus confronted with a singular system, often
referred to as weakly hyperbolic, and also called a-priori stable
[Chierchia-Gallavotti94]. In fact, this case can be referred to as totally
singular, because all the frequencies are fast.

The singular problem can be avoided if one considers independent
parameters, namely a fixed ε > 0 (that is, a fixed ω in (3)) and µ→ 0. In
such a case, the system (3–4) has the property that the hyperbolicity and
the homoclinic orbits are present in the unperturbed Hamiltonian (µ = 0),
and are simply perturbed for |µ| small. In this case, we are confronted with
a regular or strongly hyperbolic system, or also a-priori unstable.
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Hyperbolic Hamiltonians Poincaré-Arnold-Melnikov

This strategy of keeping ε > 0 fixed and letting µ→ 0 was introduced by
Poincaré in 1889 and followed in Arnold’s example to avoid dealing with a
singular perturbation problem.

Unfortunately, the exponentially small splitting of separatrices predicted by
a direct application of the Poincaré-Arnold-Melnikov (PMA) method

Splitting distance = ε PMA prediction + O(εµ)

when the PMA prediction = O
(
e−c/ε

a)
could then be justified only for µ

exponentially small in ε.
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Arnold’s proof Phase space for ε = 0

H(q, p, ϕ, I , s) =
1

2
p2 + ε(cos q − 1) +

1

2
I 2 + εµf (q)g(ϕ, s)

f (q) = cos q − 1, g(ϕ, s) = sinϕ+ cos s,

Figure: Phase Space - Unperturbed problem for ε = 0

Amadeu Delshams (UPC) Arnold diffusion for dummies October 4th, 2017 18 / 79



Arnold’s proof Invariant sets for ε = 0

Invariant tori (2D)

T̃I = {(0, 0, I , ϕ, s) : (ϕ, s) ∈ T2}

Invariant manifolds (3D):

W s T̃I = W uT̃I = {(q0(
√
ετ),
√
εp0(
√
ετ), I , ϕ, s) : τ ∈ R, (ϕ, s) ∈ T2}

where
q0(t) = 4 arctan e±t , p0(t) = 2/cosh t.

is the separatrix for positive p of the standard pendulum

P(q, p) = p2/2 + cos q − 1.
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Arnold’s proof Mechanism for small ε > 0

s

i

phiq

p

nhim

eps

e2

e1

e2

By the special form of the perturbation, T̃I persist to T̃I
ε

= T̃I
W s T̃I

ε
and W uT̃I

ε
are ε-close to the unperturbed ones.

Using Poincaré-Melnikov theory, W s T̃I
ε
t W uT̃I

ε
with an angle of

size e−π
√
ε/2.

Therefore W s T̃ εIi t W uT̃ εIi+1
for |Ii − Ii+1| ≤ e−π

√
ε/2 and a shadowing

(transition chain mechanism) gives the diffusion path.
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Arnold’s proof Main drawbacks of the proof

Minor 4 pages paper in Dokl. Akad. Nauk SSSR. “The details of
the proof must be formidable, although the idea of the proof
is clearly outlined.” (J. Moser in the MathSciNet review)

Fixable The perturbation maintains fixed all the invariant tori TI . In
general, there appear gaps around resonant tori (rational I )
which prevent W s T̃ εIi t W uT̃ εIi+1

because T̃ εIi and T̃ εIi+1
are

too far. The Scattering map can fix it.

Major The exponentially small size of the splitting e−π
√
ε/2

computed from a direct application of the PMA method is
much less than the Nekhoroshev estimates e−πε

1/4/2.

Major Arnold example only shows global instability along a single
resonance, where the associated normal form is integrable,
but does not deal with multiple resonances, where the
normal form is not integrable.
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Arnold’s proof Main drawbacks of the proof

Exponentially small splitting of separatrices

The exponentially small splitting of separatrices was already found by
Poincaré in 1890, and first addressed in 1984 by Neishtadt with upper
bounds using normal forms and by Lazutkin with asimptotic estimates
using complex parameterizations of the stable and unstable invariant
manifolds.

Proofs of its asymptotic behavior for the rapidly forced pendulum or other
rapidly oscillating periodic perturbations in
[D-Seara92,Gelfreich93,Fontich93-95,Sauzin95,Treschev97,D-
Seara97,Gelfreich97,Baldomá-Fontich04-06,Guardia-Olivé-
Seara10,Baldomá-Fontich-Guardia-Seara12].

For maps, upper exponentially small estimates in [Fontich-Simó90] and
asymptotic estimates in
[D-Raḿırez-Ros98-99,Simó-Vieiro09,Mart́ın-Sauzin-Seara11].
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Arnold’s proof Main drawbacks of the proof

Exponentially small splitting of separatrices

In the rapidly quasiperiodically forced pendulum, the rôle of the arithmetic
properties was detected in [Sim94], and established in
[D-Gelfreich-Seara-Jorba97].

For n-dimensional whiskered tori of a Hamiltonian with n + 1 degrees of
freedom, the splitting potential and Melnikov potential were introduced
[Eliasson94,D-Gutiérrez00], sharp exponentially small upper bounds were
given in [D-Gutiérrez-Seara04], and asymptotic estimates in
[Lochak-Marco-Sauzin03,D-Gutiérrez04,D-GonchenkoGutiérrez14-16].

The multidimensional separatrix map introduced by Treschev in 2002
requires more study.
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A priori unstable systems A model

We consider a 2π-periodic in time perturbation of a pendulum and a rotor
described by the non-autonomous Hamiltonian,

Hε(p, q, I , ϕ, t) = H0(p, q, I ) + εh(p, q, I , ϕ, t; ε)
= P±(p, q) + 1

2 I
2 + εh(p, q, I , ϕ, t; ε)

(5)

where (p, q, I , ϕ, t) ∈ (R× T)2 × T and

P±(p, q) = ±
(

1

2
p2 + V (q)

)
(6)

and V (q) is a 2π-periodic function. We will refer to P±(p, q) as the
pendulum.
Note. This model just comes from a normal form around a single
resonance of a nearly integrable Hamiltonian. The perturbation is arbitrary.
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A priori unstable systems Global instability

Theorem (D-Llave-Seara06)

Consider the Hamiltonian (5) where V and h are uniformly Cr+2 for
r ≥ r0, sufficiently large. Assume also that

H1 The potential V : T→ R has a unique global maximum at q = 0
which is non-degenerate. Denote by (q0(t), p0(t)) an orbit of the
pendulum P±(p, q) homoclinic to (0, 0).

H2 The Melnikov potential, associated to h (and to the homoclinic orbit
(p0, q0)):

L(I , ϕ, s) = −
∫ +∞

−∞
(h(p0(σ), q0(σ), I , ϕ+ Iσ, s + σ; 0)

−h(0, 0, I , ϕ+ Iσ, s + σ; 0))dσ
(7)

satisfies concrete non-degeneracy conditions.

H3 The perturbation term h satisfies concrete non-degeneracy conditions.
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A priori unstable systems Global instability

Then, there is ε∗ > 0 such that for 0 < ε < ε∗, and for any interval [I ∗−, I
∗
+],

there exists a trajectory x̃(t) of the system (5) such that for some T > 0,

I (x̃(0)) ≤ I ∗−; I (x̃(T )) ≥ I ∗+.

Remark Arbitrary excursions in the I variable can also be realized.
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A priori unstable systems Genericity of Global instability

Hypotheses H1, H2 and H3 are C2 generic, so, the following short version
of the Theorem also holds:

Theorem (D-Huguet09)

Consider the Hamiltonian (5) and assume that V and h are Cr + 2
functions which are C2 generic, with r > r0, large enough. Then there is
ε∗ > 0 such that for 0 < |ε| < ε∗ and for any interval [I ∗−, I

∗
+], there exists

a trajectory x̃(t) of the system with Hamiltonian (5) such that for some
T > 0

I (x̃(0)) ≤ I ∗−; I (x̃(T )) ≥ I ∗+.

Remark A (non optimal) value of r0 which follows from our argument is
r0 = 242.
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A priori unstable systems A multidimensional model

Consider a periodic in time perturbation of n pendula and a d-dimensional
rotor described by the non-autonomous Hamiltonian,

H(p, q, I , ϕ, t, ε) = P(p, q) + h(I ) + εQ(p, q, I , ϕ, t, ε), (8)

with P(p, q) =
∑n

j=1 Pj(pj , qj), Pj(pj , qj) = ±
(

1
2p

2
j + Vj(qj)

)
, where

I ∈ I ⊂ Rd , ϕ ∈ Td , I an open set, p, q ∈ Rn, t ∈ T1, and Pj(pj , qj) is a
pendulum for the saddle variables pj , qj . For ε = 0, the d-dimensional
action I remains constant. Under similar hypotheses as for n = d = 1,

Theorem (D-Llave-Seara12)

For every δ > 0, there exists ε0 > 0, such that for every 0 < |ε| < ε0,
given I± ∈ I,there exists a solution x̃(t) of (8) and T > 0, such that

|I (x̃(0))− I−| ≤ Cδ and |I (x̃(T ))− I+| ≤ Cδ (9)
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A priori unstable systems A multidimensional model

One can forget about δ and prescribe arbitrary paths on a set I∗.
This set I∗ is described precisely in the course of the proof, and is
determined by the non-degeneracy assumptions. The main idea is
that I∗ is obtained from the domain of definition, just eliminating
some sets of codimension 2, like double resonances, from the open set
where the intersection of stable and unstable manifolds of a normally
hyperbolic invariant manifold is transversal.

Codimension 2 objects do not separate the regions and can be
contoured so that they do not obstruct the change along the paths. It
seems that such contouring trajectories close to double resonances are
inferred from some movies related to numerical experiments in
(Gelfreich-Simó-Vieiro 13)
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A priori unstable systems A multidimensional model
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Other contributions

This problem of instability, also called Arnold diffusion, was posed first by
Arnold in 1964, and there have been some other contributions, using
geometrical or variational methods:
[Lochak92], [Chierchia-Gallavotti94-98], [Bessi-Chierchia-Valdinoci01]
[Berti-Biasco-Bolle03], [Marco-Sauzin03], [Mather04], [Cheng-Yan04],
[Gidea-Llave06], [Piftankin-Treschev07], [Kaloshin-Levi08], [ChengY09],
[Bernard-Kaloshin-Zhang11], [Zhang11], [Mather12], [Treschev12],
[Gelfreich-Simó-Vieiro13], [GelfreichT14], [Gidea-Llave-Seara14],
[Kaloshin-Zhang15], [Lazzarini-Marco-SauzinS15],
[Davletshin-Treschev16], [Marco16], [Gidea-Marco17], [Cheng17].



A priori unstable systems Idea of the proof

The main idea of the proof is to use the two (or more) dynamics on Λ̃.

Find a big invariant saddle object: a NHIM (normally hyperbolic
invariant manifold: a global version of a center manifold) Λ̃ with
transverse associated stable and unstable manifolds along some
homoclinic manifold Γ: Wu(Λ̃) tΓ Ws(Λ̃).

Compute the invariant objects (typically tori T ) which may prevent
instability for the inner dynamics of the NHIM.

Compute an scattering map S = SΓ : H− ⊂ Λ̃→ H+ ⊂ Λ̃ on the
NHIM associated to Γ and consider it as an outer dynamics on the
NHIM (a second dynamics on Γ).

Check that S(TIi ) t TIi+1
for a sequence of tori {TIi}Ni=1 with

|IN − I1| = O(1), and construct a transition chain of whiskered tori,
i.e. Wu(TIi ) tWs(TIi+1

).

Standard shadowing methods provide an orbit that follows closely the
transition chain.
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Proof in a concrete example The result

Consider a pendulum and a rotor plus a time periodic perturbation
depending on two harmonics in the variables (ϕ, s):

Hε(p, q, I , ϕ, t) = ±
(
p2

2
+ cos q − 1

)
+

I 2

2
+ εh(q, ϕ, s) (10)

h(q, ϕ, s) = f (q)g(ϕ, s),

f (q) = cos q, g(ϕ, s) = a1 cos(k1ϕ+ l1s) + a2 cos(k2ϕ+ l2s),
(11)

with k1, k2, l1, l2 ∈ Z.

Theorem

Assume that a1a2 6= 0 and
∣∣∣k1 k2
l1 l2

∣∣∣ 6= 0 in (10)-(11). Then, for any I ∗ > 0,

there exists ε∗ = ε∗(I ∗, a1, a2) > 0 such that for any ε, 0 < ε < ε∗, there
exists a trajectory (p(t), q(t), I (t), ϕ(t)) such that for some T > 0

I (0) ≤ −I ∗ < I ∗ ≤ I (T ).
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Proof in a concrete example The two dynamics in NHIM

We have two important dynamics associated to the system: the inner and
the outer dynamics.

Λ̃ = {(0, 0, I , ϕ, s); I ∈ [−I ∗, I ∗] , (ϕ, s) ∈ T2}.

is a 3D Normally Hyperbolic Invariant Manifold (NHIM) with associated
4D stable W s

ε (Λ̃) and unstable W u
ε (Λ̃) invariant manifolds.

The inner dynamics is the dynamics restricted to Λ̃. (Inner map)

The outer dynamics is the dynamics restricted to its invariant
manifolds. (Scattering map)

Remark: for simplicity, in our case Λ̃ = Λ̃ε .
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Proof in a concrete example Scattering map

Let Λ̃ be a NHIM with invariant manifolds intersecting transversally along
a homoclinic manifold Γ. A scattering map is a map S defined by
S(x̃−) = x̃+ if there exists z̃ ∈ Γ satisfying

|φεt (z̃)− φεt (x̃∓)| −→ 0 as t −→ ∓∞

that is, W u
ε (x̃−) intersects transversally W s

ε (x̃+) in z̃ .
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Proof in a concrete example Reduced Poincaré L∗(I , θ)

S is symplectic and exact (Delshams -de la Llave - Seara 2008) and takes the
form:

Sε(I , ϕ, s) =

(
I + ε

∂L∗

∂θ
(I , θ) +O(ε2), θ − ε ∂L

∗

∂I
(I , θ) +O(ε2), s

)
,

where θ = ϕ− Is and L∗(I , θ) is the Reduced Poincaré function, or more simply
in the variables (I , θ):

Sε(I , θ) =

(
I + ε

∂L∗

∂θ
(I , θ) +O(ε2), θ − ε ∂L

∗

∂I
(I , θ) +O(ε2)

)
,

The variable s remains fixed under Sε: it plays the role of a parameter

Up to first order in ε, Sε is the −ε-time flow of the Hamiltonian L∗(I , θ)

The scattering map jumps O(ε) distances along the level curves of L∗(I , θ)
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Proof in a concrete example Melnikov Potential L(I , ϕ, s)

To get a scattering map we search for homoclinic orbits to Λ̃ε

Proposition

Given (I , ϕ, s) ∈ [−I ∗, I ∗] × T2, assume that the real function

τ ∈ R 7−→ L(I , ϕ− I τ, s − τ) ∈ R

has a non degenerate critical point τ∗ = τ(I , ϕ, s), where L(I , ϕ, s) =∫ +∞

−∞
h(p0(σ), q0(σ), I , ϕ+ Iσ, s + σ; 0)− h(0, 0, I , ϕ+ Iσ, s + σ; 0)dσ.

Then, for 0 < |ε| small enough, there exists a transversal homoclinic point z̃ to

Λ̃ε, which is ε-close to the point z̃∗(I , ϕ, s) = (p0(τ∗), q0(τ∗), I , ϕ, s) ∈ W 0(Λ̃):

z̃ = z̃(I , ϕ, s) = (p0(τ∗) + O(ε), q0(τ∗) + O(ε), I , ϕ, s) ∈ W u(Λ̃ε) t W s(Λ̃ε).
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Proof in a concrete example L(I , ϕ, s) and L∗(I , θ)

In our model the perturbation is

h(p, q, I , ϕ, s) = cos q (a0 cos(k1ϕ+ l1s) + a1 cos(k2ϕ+ l2s))

and the Melnikov potential becomes

L(I , ϕ, s) = A0(I ) cos(k1ϕ+ l1s) + A1(I ) cos(k2ϕ+ l2s),

where A0(I ) =
2π (k1I + l1) a0

sinh( (k1I+l1)π
2 )

and A1 =
2 (k2I + l2)π a1

sinh( (k2I+l2)π
2 )

.

Definition

The Reduced Poincaré function is

L∗(I , θ) = L(I , ϕ− I τ∗(I , ϕ, s), s − τ∗(I , ϕ, s)),

where θ = ϕ− I s.
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Proof in a concrete example Plot of L(I , ϕ, s)

Figure: The Melnikov Potential, µ = a0/a1 = 0.6, I = 1, k1 = l2 = 1 and
k2 = l1 = 0.
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Proof in a concrete example The function τ ∗

We look for τ∗ such that ∂L
∂τ (I , ϕ− I τ∗, s − τ∗) = 0.

Different view-points for τ∗ = τ∗(I , ϕ, s)

Look for critical points of L on the straight line
R(I , ϕ, s) = {(ϕ− I τ, s − τ), τ ∈ R}.
Look for intersections between R(I , ϕ, s) = {(ϕ− I τ, s − τ), τ ∈ R}
and a crest which is a curve of equation

∂L
∂τ

(I , ϕ− I τ, s − τ)|τ=0 = 0.
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Proof in a concrete example Crests

Definition - Crests (Delshams-Huguet 2011)

For each I , we call crest C(I ) the set of curves in the variables (ϕ, s) of equation

I
∂L
∂ϕ

(I , ϕ, s) +
∂L
∂s

(I , ϕ, s) = 0. (12)

which in our case can be rewritten as

µα(I ) sinϕ+ sin s = 0, with α(I ) =
sinh(π

2
) I 2

sinh(π I
2

)
, µ =

a10

a01
. (13)

For any I , the critical points of the Melnikov potential L(I , ·, ·) ((0, 0), (0, π),
(π, 0) and (π, π): one maximum, one minimum point and two saddle points)
always belong to the crest C(I ).

L∗(I , θ) is nothing else but L evaluated on the crest C(I ).

θ = ϕ− Is is constant on the straight line R(I , ϕ, s)
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Proof in a concrete example Geometry of a crest

Figure: Level curves of L for µ = a0/a1 = 0.5, I = 1.2, k1 = l2 = 1 and
k2 = l1 = 0.
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Proof in a concrete example Geometry of a crest

Understanding the behavior of the crests

⇓
Understanding the behavior of the Reduced Poincaré function

⇓
Understanding the Scattering map

Amadeu Delshams (UPC) Arnold diffusion for dummies October 4th, 2017 43 / 79



Proof in a concrete example Reduction to two cases

We only need to study two cases:

The first (easier) case [D-Schaefer 17]

h(q, ϕ, s) = cos q (a0 cosϕ+ a1 cos s)

The second case [D-Schaefer 17]

h(q, ϕ, s) = cos q (a0 cosϕ+ a1 cos(ϕ− s))

Each case has its own characteristics and together are enough to
understand the general case.
We present just some highlights about each case.
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k1 = l2 = 1 and k2 = l1 = 0 Highways

Definition: Highways

Highways are the level curves of L∗ such that

L∗(I , θ) =
2πa0

sinh(π/2)
.

The highways are “vertical” in the variables (ϕ, s)

We always have a pair of highways. One goes up, the other goes
down (this depends on the sign of µ = a0/a1)

The highways give rise to fast diffusing pseudo-orbits
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k1 = l2 = 1 and k2 = l1 = 0 Plot of highways

Figure: The scattering map jumps O(ε) distances along the level curves of
L∗(I , θ)
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k1 = l2 = 1 and k2 = l1 = 0 0 < |µ| < 0.97

For |µα(I )| < 1, there are two crests CM,m(I ) parameterized by:

s = ξM(I , ϕ) = − arcsin(µα(I ) sinϕ) mod 2π (14)

ξm(I , ϕ) = arcsin(µα(I ) sinϕ) + π mod 2π

They are “horizontal” crests
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k1 = l2 = 1 and k2 = l1 = 0 0 < |µ| < 0.625

For each I , the line R(I , ϕ, s) and the crest CM,m(I ) have only one intersection
point.

The scattering map SM associated to the intersections between CM(I ) and
R(I , ϕ, s) is well defined for any ϕ ∈ T. Analogously for Sm, changing M to m. In
the variables (I , θ = ϕ− Is), both scattering maps SM, Sm are globally well defined.

(a) Level curves of L∗M(I , θ) (b) Level curves of L∗m(I , θ)
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k1 = l2 = 1 and k2 = l1 = 0 0.625 < |µ|

There are tangencies between CM,m(I , ϕ) and R(I , ϕ, s). For some value of
(I , ϕ, s), there are 3 points in R(I , ϕ, s) ∩ CM,m(I ).

This implies that there are 3 scattering maps associated to each crest with
different domains.(Multiple Scattering maps)
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k1 = l2 = 1 and k2 = l1 = 0 0.625 < |µ|

(c) The three types of level curves. (d) Zoom where the scattering maps
are different

Figure: Level curves of L∗M(I , θ), L∗(1)
M (I , θ) and L∗(2)

M (I , θ)
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k1 = l2 = 1 and k2 = l1 = 0 0.97 < |µ|

For some values of I , |µα(I )| > 1, the two crests CM,m are parameterized by:

ϕ = ηM(I , s) = − arcsin(µα(I ) sin s) mod 2π (15)

ηm(I , s) = arcsin(µα(I ) sin s) + π mod 2π

They are “vertical” crests
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k1 = l2 = 1 and k2 = l1 = 0 0.97 < |µ|

For the values of I and when horizontal crests become vertical, it is not
always possible to prolong in a continuous way the scattering maps, so the
domain of the scattering map has to be restricted.

Figure: The level curves of L∗M(I , θ), µ = 1.5.

In green, the region where the scattering map SM is not defined.
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k1 = l2 = 1 and k2 = l1 = 0 An example of pseudo-orbit

Figure: In red: Inner map, blue: Scattering map, black: Highways
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k1 = l2 = 1 and k2 = l1 = 0 Time of diffusion

An estimate of the total time of diffusion between −I ∗ and I ∗, along the highway, is

Td =
Ts

ε

[
2 log

(
C

ε

)
+O(εb)

]
, for ε→ 0, where 0 < b < 1,

with

Ts = Ts(I
∗, a10, a01) =

∫ I∗

0

− sinh(πI/2)

πa10I sinψh(I )
dI ,

where ψh = θ − Iτ∗(I , θ) is the parameterization of the highway L∗(I , ψh) = A00 + A01,
and

C = C(I ∗, a10, a01) = 16 |a10|

(
1 +

1.465√
1− µ2A2

)

where A = maxI∈[0,I∗] α(I ), with α(I ) =
sinh( π

2
) I 2

sinh( π I
2

)
and µ = a10/a01.

Note: This estimate quantifies the general optimal diffusion estimate O
(

1

ε
log

1

ε

)
of

[Berti-Biasco-Bolle 2003], [Cresson-Guillet 2003] and [Treschev 2004).
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k1 = k2 = 1, l2 = −1 and l1 = 0 The second case

Main differences between the first and the second case

In the second case:

There are no Highways.

For any value of µ = a0/a1 is possible to find Ih and Iv such that for
I = Ih the crests are horizontal and for I = Iv the crests are vertical.

For any value of µ there exists I such that the crests and R(I , ϕ, s)
are tangent.
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k1 = k2 = 1, l2 = −1 and l1 = 0 Scattering maps for one crest

The choice of the concrete curve of the crest and therefore of τ∗(I , θ) is
very important and useful.

Figure: The “lower” crest Figure: The “upper” crest

Green zones: I increases under the scattering map.
Red zones: I decreases under the scattering map.
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k1 = k2 = 1, l2 = −1 and l1 = 0 Scattering maps for one crest

Figure: Lower |τ∗| between “lower” and “upper” crest
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k1 = k2 = 1, l2 = −1 and l1 = 0 a non-smooth scattering map

In this picture we show a combination of 6 scattering maps.
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3 + 1/2 degrees of freedom A model

H(I1, I2, ϕ1, ϕ2, p, q, t, ε) = ±
(
p2

2
+ cos q − 1

)
+ h(I1, I2) + ε cos q g(ϕ1, ϕ2, t),

where

h(I1, I2) = Ω1
I 2
1

2
+ Ω2

I 2
2

2

and
g(ϕ1, ϕ2, t) = a1 cosϕ1 + a2 cosϕ2 + a3 cos(ϕ1 + ϕ2 − t).

Under general conditions for a1, a2, a3,Ω1,Ω2, global instability was established in

[D-Llave-Seara 2016]
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3 + 1/2 degrees of freedom Melnikov potential

In this case, the Melnikov potential is

L(I , ϕ− ωτ) =
3∑

i=1

Ai cos(ϕi − ωiτ),

where ϕ = (ϕ1, ϕ2, ϕ3), ω = (ω1, ω2, ω3), ϕ3 = ϕ1 + ϕ2 − s,

Ai =
2πωi

sinh(π ωi
2 )

ai ,

and

ω1 = Ω1I1 ω2 = Ω2I2 ω3 = ω1 + ω2 − 1.

Remark: The reduced Poincaré function L∗(I , θ) can be defined but the
associated Hamiltonian vector field is no longer integrable
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3 + 1/2 degrees of freedom Example of crests

Figure: Horizontal crests:
µ1 = µ2 = 0.48
,ω1 = ω2 = 1.219.

Figure: Crests with holes : µ1 = 0.7,µ2 = 0.6
,ω1 = ω2 = 1.219.
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3 + 1/2 degrees of freedom Behavior of the crests

Figure: ω1 = ω2 = 1.219
Figure: µ1 = µ2 = 1.2

Pink: Surface with holes, white: horizontal surfaces s(ϕ1, ϕ2), purple: vertical surfaces

ϕ1(ϕ2, s), green: vertical surfaces ϕ2(ϕ1, s).
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A priori chaotic systems geodesic flow

(Quasi)-periodic perturbations of geodesic flows

Theorem ([D-Llave-Seara06])

Let M be a n-dimensional manifold, g a Cr metric on it (r sufficiently
large). Assume:

H1 There exists a closed geodesic “Λ” such that its corresponding
periodic orbit Λ̂ under the geodesic flow is hyperbolic.

H2 There exists another geodesic “γ” such that γ̂ is a transversal
homoclinic orbit to Λ̂.
That is, γ̂ is contained in the intersection of the stable and unstable
manifolds of Λ̂, W s

Λ̂
, W u

Λ̂
, in the unit tangent bundle.

Moreover, we assume that the intersection of the stable and unstable
manifolds of Λ̂ is transversal along γ̂. That is,

Tγ(t)W
s
Λ̂

+ Tγ(t)W
u
Λ̂

= Tγ(t)S1M, t ∈ R.
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A priori chaotic systems geodesic flow

Abundance of Hypoteses H1, H2

Hipotheses H1, H2 are abundant:

They are generic on T2 [Morse24], [Hedlund32], [Mather94].

They hold on any closed surface of genus bigger or equal than 2, if
r ≥ 2 + δ, δ > 0. [Katok82]).

They are generic in the C2 topology for any closed surface
[Contreras-Paternain02].

Amadeu Delshams (UPC) Arnold diffusion for dummies October 4th, 2017 64 / 79



A priori chaotic systems geodesic flow

(Quasi)-periodic perturbations of geodesic flows

Let ν ∈ Rd be Diophantine, r ∈ N be sufficiently large (depending on τ ,
the Diophantine exponent of ν).
Let g be a Cr metric on a compact manifold M, verifying hypotheses H1,
H2, and U : M × Td → R a generic Cr function.
Consider the time dependent Lagrangian

L(q, q̇, νt) =
1

2
gq(q̇, q̇)− U(q, νt), (16)

where gq denotes the metric in TqM.
Then, the Euler-Lagrange equation of L has a solution q(t) whose energy

E (t) =
1

2
gq(q̇(t), q̇(t)) + U(q(t), νt),

tends to infinity as t →∞.
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A priori chaotic systems ERTBP

(Planar) elliptic restricted three body problem (ERTBP)

Consider the motion of a particle q with zero mass (comet) under the
attraction of two particles q1 (Sun, with mass 1− µ) and q2 (Jupiter,
with mass µ), called primaries, which move in elliptic orbits with
eccentricity e0 around their center of mass.

The motion of q is described by a time-periodic Hamiltonian system,
with 2 and 1/2 degrees of freedom, with Hamiltonian

H(q, p, t; e0, µ) =
p2

2
− (1− µ)

|q − q1(t, e0)|
− µ

|q − q2(t, e0)|
.

We consider the motion of the particle q (comet) when it moves
outside of the orbit of the primaries along nearly parabolic orbits.

Parameters: 0 < µ < 1, e0 ≥ 0, small.
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A priori chaotic systems ERTBP

The two body problem: Sun-comet for µ = 0

When µ = 0, the Sun is fixed at the origin: q1(t, e0) = 0

The Sun q1 and the comet q form the two-body problem.

In polar coordinates: q = (r cosα, r sinα), α ∈ T, r ≥ 0, the
Hamiltonian of the two body problem becomes

H0(r ,Pr , α,G ) =
P2
r

2
+

G 2

2r2
− 1

r
,

H0 is the energy and G = Pα is the angular momentum.

H0 and G are both first integrals of motion.

If H0 = h < 0, motions are elliptic with semi-major axis a = 1/(−2h)
and eccentricity e =

√
1 + 2hG 2.

If h = 0 (which corresponds to e = 1) the motion is parabolic.

The two-body problem is integrable.
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A priori chaotic systems ERTBP

Diffusion of the angular momentum G

In the elliptic restricted three body (ERTBP) problem we want to see that
the angular momentum of the comet G (t) can have large changes when
the eccentricity e0 > 0 and µ > 0 are small enough:

Theorem (D-Kaloshin-Rosa-Seara12)

Given any G1,G2 � 1, there exist trajectories of the ERTBP whose
angular momentum satisfies, for some T > 0:

G (0) < G1 G (T ) > G2

Proven for 0 < µ� e0 � 1 and any 1� G1,G2 � 1/e0.
Likely (need still some work) for any 0 < e0 < 1 and 0 < µ� 1.
Remark Two different scattering maps are used in the construction of the
diffusing trajectories.
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spatial RTBP close to L1

Arnold’s mechanism of diffusion in the spatial RTBP

Model:

The spatial circular restricted three-body problem: an infinitesimal
mass moves in space under the gravitational influence of two massive
bodies (primaries) describing circular orbits, without exerting any
influence on them
Focus on the dynamics near L1, the libration point between the
primaries – center×center×saddle

Results:
There exist trajectories that change the out-of-plane amplitude (w.r. to
the ecliptic) of an orbit near L1 by a ‘significant amount’, via the
Arnold mechanism of instability

abstract theorem – if certain conditions hold true then the existence of
drift trajectories follows
verification of conditions – some analytical, some numerical

Related works [Samà,2004],[Terra,Simó,de Sousa Silva,2014]
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spatial RTBP close to L1

Introduction

Method:

There exists a normally hyperbolic invariant three-sphere
We construct orbits that alternatively follow segments of homoclinic
trajectories (outer dynamics) with segments of trajectories restricted to
the three-sphere (inner dynamics), thus mimicking Arnold’s instability
mechanism of transition tori1

However, we use only coarse information on the inner dynamics
(Poincaré recurrence theorem), no detailed information on the invariant
objects (KAM tori, Aubry-Mather sets, etc.)
We use a geometric method that allows for explicit construction of
drifting trajectories under milder conditions on the dynamics (compared
to variational methods)
This is a general strategy

1Our model is not a small perturbation of an integrable system
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spatial RTBP close to L1

Reference Problem: 3D Circular RTBP

The Restricted Three Body Problem (RTBP) defined as

Ẍ − 2Ẏ = ΩX ,

Ÿ + 2Ẋ = ΩY ,

Z̈ = ΩZ ,

where

Ω =
1

2
(X 2 + Y 2) +

1− µ
r1

+
µ

r2
+

1

2
µ(1− µ),

r2
1 = (X − µ)2 + Y 2 + Z 2,

r2
2 = (X − µ+ 1)2 + Y 2 + Z 2.
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spatial RTBP close to L1

Libration Points

X -coordinate of L1 is

X1 = −1 +
(µ

3

)1/3
− 1

3

(µ
3

)2/3
+ Oµ.

In the Sun-Earth system,
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spatial RTBP close to L1

Birkhoff Normal Form

On the center manifold, we obtain a two degrees of freedom Hamiltonian

Hc = HN

(
0,

x2
2 + y2

2

2
,
x2

3 + y2
3

2

)
.

Define the action-angle coordinates

Ip :=
x2

2 + y2
2

2
, φp

Iv :=
x2

3 + y2
3

2
, φv .

The equations of motion are integrable

İp = 0, φ̇p = ∂H
∂Ip

= ωp(Ip, Iv ) (17)

İv = 0, φ̇v = ∂H
∂Iv

= ωv (Ip, Iv ), (18)

and each solution lies on a 2-dimensional torus.
Each torus can be identified with the actions Ip, Iv .
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spatial RTBP close to L1

Family of Invariant Tori

Let us fix the energy level to H(0, Ip, Iv ) = h, with
H(L1) ≤ h ≤ H(halo).
Then we obtain a one-parameter family of invariant tori, parametrized
by the vertical action Iv . Iv=0.00
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Figure: Low energy level C = 3.00088
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spatial RTBP close to L1

Family of Invariant Tori

Let us fix the energy level to H(0, Ip, Iv ) = h, with
H(L1) ≤ h ≤ H(halo).
Then we obtain a one-parameter family of invariant tori, parametrized
by the vertical action Iv . Iv=0.00
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Figure: High energy level C = 3.00083
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spatial RTBP close to L1

Transition Matrix
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Figure: High energy level C = 3.00083
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spatial RTBP close to L1

Main theoretical result (D-Gidea-Roldán 17)

Main Theorem. Given δ > 0.
Assume ∃ {LΣ

Ij
}j=0,N level sets of Iv , with 0 < Ij < Imax , and δj with

0 < δj < δ/2, s.t., for each j = 0, . . . ,N − 1:

(i) ∃ scattering map σΣ
i(j) and pt. (Ij , φj) ∈ LΣ

Ij
s.t.

Bδj (Ij , φj) ⊂ domσΣ
i(j),

(ii) ∃kj > 0 s.t. int[F kj ◦ σΣ
i(j)(Bδj (Ij , φj))] ⊇ Bδj+1

(Ij+1, φj+1)

Then ∃ an orbit zj of F in Σ, j = 0, . . . ,N, and a sequence of positive
integers nj > 0, j = 0, . . . ,N − 1, such that zj+1 = F nj (zj) and

d(zj ,LΣ
Ij

) < δ/2, for all j = 0, . . . ,N. (19)

Consequently, there exist a trajectory Φt(z) of the Hamiltonian flow, and a
finite sequence of times 0 = t0 < t1 < t2 < . . . < tN , such that

d(Φtj (z),LIj ) < δ. (20)
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spatial RTBP close to L1

Main theoretical result

1

2 3

4 5

6

0 1 2 3 4 5 6
phi_v

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

I_
v

Amadeu Delshams (UPC) Arnold diffusion for dummies October 4th, 2017 77 / 79



spatial RTBP Future work

Try to find drift orbits by constructing pseudo-orbits consisting of
successive applications of several scattering maps

Obtain theoretical results, using Hill locally and Kepler globally

Add time dependent perturbation—elliptic orbit of Jupiter—and
derive the existence of drift orbits
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