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Overview

e Equilibria and periodic orbits of PDEs.

e Newton-Krylov continuation methods. Iterative matrix-free linear solvers.

e Stability. Subspace iteration and Arnoldi methods.

e Continuation of codimension-one bifurcation points periodic orbits. An example.
e Convection is spherical shells. Waves and modulated waves.

e Other invariant objects.
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Equilibria and periodic orbits of ODEs

Assume
y = f(y,p) (or By=f(y,p)), (y,p) €U CR" xR

is a large-scale (n > 1) autonomous system of ODEs obtained after the spatial discretization of a

system of parabolic PDEs and that
¢(t,z,p)
is its solution with initial condition x at ¢ = 0 for a fixed value of p, that is, (0, z,p) = z.

We will assume that this system has been obtained as the discretization of a systems of evolutionary
parabolic PDEs (reaction-diffusion or Navier-Stokes equations, for instance).

We are interested in the computation of its equilibria = satisfying

f(z,p) =0,
their dependence on the parameter p and their stability.

We are also interested in the periodic regimes of the system given by the equations
z — (T, 2,p) =0,
g(x) =0,
x being a point of the periodic orbit selected by the phase condition g(x) = 0 and T > 0 its period.

In both cases one has to solve large-scale nonlinear systems of equations and to study the stability of
the resulting equilibria or periodic orbits.
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Continuation of zeros of a nonlinear system of equations

Consider a system of nonlinear equations depending on a parameter p
H(xz,p) =0, (xz,p)ceU CR™ xR

with m > 1. We are interested in its solutions and their dependence on p.

Parameter and pseudo-arclength-like continuation methods are used to obtain the curves
(z(s),p(s)) of fixed points. They admit an unified formulation by adding an equation

h(z,p) = 0.

If h(xz,p) = p — po the equation fixes the parameter p.

If h(z,p) = hy(z — o) + hp(p — po), with (zo,po)
and (hz, hp) being the predicted point and the tangent

to the curve of solutions, the hyperplane is transverse X /h(x,p)
to the curve of solutions if the prediction is not far away (X
from the previous point, and the algorithm allows passing ~. | ( X p)
turning poits. /‘/./_'—._\\

- . - S
The system that determines a unique solution, p |

(xz,p) € R™T1 is then

H(z,p)
h(z,p)

H(z,p) = =0 e R™T.
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The system ﬁ(az,p) = 0 is solved by an inexact Newton's method:
starting from the initial (xq, po),

($¢+1,pz‘+1) — (ilfiapz') + (Af’?z‘, Apz-),

where (Az;, Ap;) satisfies the linear system

Dy H(xz;,p;) DpH(xi,p;) Az; —H(xz;,pi)
ha hp Ap; —h(xi,pi)

which is solved iteratively by matrix-free methods (GMRES(M), BiCGStab, TFQRM, etc.) which
only require the computation of matrix products, i.e., products of the form

DyH(zi,pi) DpH(xipi)\ [0z
h) hy 5p

and, eventually, the use of preconditioners.

GMRES(M) = Generalized Minimal Residual (with restarting dimension M)
BiCGStab —  Biconjugate Gradient Stabilized
TFQRM —  Transpose-Free Quasi-Minimal Residual
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Krylov methods for linear systems

Large-scale linear systems Ax = b of dimension n > 1 are usually solved by iterative Krylov
methods. The class of projection methods produce, from an initial guess xg, a sequence of
approximations, x, to the solution z* = A~ 1b, in the affine subspace zj, € xg + K, which satisfy
the Petrov-Galerkin condition

b— ACEk L ,Ck,

where K and L, are two k-dimensional linear subspaces. If £, = AK, then £, minimizes
||b — Ax||2 over z € g 4+ K.

In the particular case of GMRES, L = AK}, and K}, is the Krylov subspace

K = {To,A’I’(),A2’r’0, .. .,Ak_l'r’o}, with 79 = b — Axg.

It follows that rx = pr(A)rg, pr being a polynomial of degree k, with py(0) = 1.

Theorem. (Saad and Schultz 1986) Assume that A is diagonalizable with A = VAV =1 where
A =diag(A1, -+, An) is the diagonal matriz of eigenvalues, Py is the set of polynomials of
degree at most k, and ko (V) = ||[V~1|2]|V]|2 is the norm-2 condition number of V. Then at
the k-th step of GMRES

16 — Azg|l2 .
< ka(V) inf ).
b= Azg|, = "2V nf - max [p(A)
p(0)=1
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Preconditioning

If the spectrum of A is not clustered it is necessary to use preconditioners to accelerate the

convergence of the iterative solvers for the linear system Ax = b.

Suppose M is a matrix which approximates A (M =~ A) and is easy to invert (easy to solve systems
with matrix M).

e Left preconditioning. Solve the system
M~ Az = M~ 'b.
Its solution is that of Ax = b.

e Right preconditioning. Solve system
AM~ 1ty =0b.
Then the solution of Ax =bis x = M~ 1y.
This means that when applying a matrix-free method (GMRES, for instance) each matrix product
by A is substituted by a matrix product by A followed by a matrix solve with matrix M in the case

of left preconditioning, or by a matrix solve with matrix M followed by a matrix product by A for

right preconditioning.
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Continuation of equilibria

Summarizing, it is possible to find the equilibria of the system of ODEs

y=f(y,p), (y,p) €U CR"™ xR,

by Newton-Krylov methods by a generic continuation code if one can provide three subroutines:
e fun(X,H) computing the function H = f(x,p) from X = (x,p),

e dfun(X, X, dH) which computes the action by the Jacobian 6 H = D, f(x,p)dx + Dpf(x,p)dp
from X = (z,p) and 6 X = (dx, dp), and

e prec(X,h, X, dZ) which solves MéZ = 96X from X = (x,p), h = (hg, hp), and 6 X = (dz, Ip),

M being an approximation of

Dy f(xi,pi) Dpf(xi,p;)

he hp
Approximation of the forms
M 0 M 0
M = or M=
0 1 hl  hy

can be used, with M =~ D, f(x;,p;).
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Continuation of periodic orbits of ODEs
To compute periodic orbits of

y=f(y,p), (y,p) €U CR"™ xR,

by Newton-Krylov methods two subroutines are needed:

e fun(X,H) computing the function

r — SO(T7 .CU,p)

H(x,T,p) =
9(z)
from X = (x,T,p), g(x) being a phase condition. This involves integrating

y = f(y,p) with initial conditions y(0) =z during a time T.
e dfun(X, 0X,dH) which computes the action by the Jacobian of the system

0x — Dgp(T, x,p)éx — Dpp(T, x,p)0p — Dep(T, x,p)éT

OH = DH(x,T,p)(dx, 6T, dp) =
Dgzg(z)dx
from X = (z,T,p) and X = (dz,dT, ép).

If the equation is §y = f(y,p) then Dip(T,xz,p) = f(p(T,x,p),p).

If it is By = f(y,p) and B is not invertible then D;p(T, z,p) can be approximated at the end of
the time integration by finite differences.
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The matrix product

Dgyp(T,z,p)dx + Dpp(T, z,p)op

can be computed by integrating a first variational equation. If

y(t) =p(t, x,p)
y1(t) =Dzp(t, x,p)dx + Dpp(t, xz,p)dp

then y1 satisfies
v1 = Dy f(y,p)y1 + Dpf(y,p)op and y1(0) = 6w,
because ¢ (0, x,p) = x.

This equation must be solved coupled with that for v,

v = f(y,p)
y1 = Dy f(y,p)y1 + Dpf(x,p)dp

<

VS
S

N—
|
)

with initial conditions

<
=
/
)
N—
|
%)
8

Finally
Dzp(T, z,p)ox + Dpp(T,x,p)dp = y1(T).
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Stability

e The stability of equilibria and the detection of their bifurcation needs the computation of the
eigenvalues of largest real part of

Dy f(x,p)v=Av (or Dgf(x,p)v=ABv if the equationis By = f(z,p)).

e The stability of periodic orbits and the detection of their bifurcation needs the computation of
the eigenvalues (Floquet multipliers) of largest modulus of

Dgp(T,x,p)v = Au.

Two main methods are available to obtain the eigenvalues the largest modulus of a n X n large-scale
(n > 1) matrix A:

e Subspace iteration. Implemented, for instance, in the packages LOPSI(1981) and SRRIT(1997).
Generalization of the power method.

e Arnoldi methods. Implemented in ARPACK(1997). Based on Krylov subspaces

Ki = {v, Av, A%v, ... A1y},

Both require the computation of matrix actions u — Au.
e The case of periodic orbits is, in principle, straightforward.

e The case of equilibria needs transformations of eigenvalues.
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Eigenvalue Transformations

To find the leading (maximal real part) eigenvalues of Av = ABv, with A = Dy f(x,p), the
following transformations can be used:

e Shift-invert with real or complex shift:
Av=ABv = (A—oB) 'Bv=pv with pu=1/(A—o0).
The circle C(o, |\ — o|) in the A-plane is mapped to the circle C(0, |\ — o|~1) in the p-plane.

e Generalized Cayley transformation:
Av=ABv = (A—oB) Y A—7mB)v=puv with p=M\-7)/(A—o0).

The line Re(\) = (0 + 7)/2 is mapped to the unit circle and Re(\) < (o + 7)/2
+

(Re(A) > (o0 4+ 7)/2) is mapped to the interior (exterior) of the unit circle.

e Exponential:
Av = v = exp(TA)v =puv with pu=-exp(AT).

The line Re(\) = 0 is mapped to the unit circle and Re(\) < 0 (Re(A) > 0) is mapped to the
interior (exterior) of the unit circle.

The previous methods (subspace or Arnoldi iterations) can be used to find the eigenvalues p with
maximal modulus of the transformed problems.
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Continuation of codimension-one bifurcations of periodic orbits

Consider an autonomous system of ODEs

v = f(y,p), (y,p) €U CR"™ x R?,

depending on two parameters p = (p1,p2) obtained after spatial discretization of a system of
parabolic PDEs (n >> 1).

Let y(t) = ¢(t, x,p) be its solution with initial condition y(0) = x at ¢ = 0 and for a fixed p.

We are interested in tracking curves of codimension-one bifurcations of periodic orbits in system
with or without symmetries.

Let assume a matrix-free continuation code based on Newton-Krylov methods is available to follow
the curves of solutions of

H(X) =0

with X e U ¢ R™*! and H(X) € R™, which requires the user to provide an initial solution Xy,
and two subroutines:

e fun(X,h) which computes h = H(X) from X, and

e dfun(X, X, éh) which computes 6h = Dx H(X)dX from X, and 6 X.
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Saddle—node and period doubling bifurcations

The saddle-node (A = 1) and period doubling (A = —1) bifurcations of periodic orbits are solutions
of the system H(z,u,T,p) = 0 given by

r — gO(T,:U,p) — Oa
g(z) =0,

Au — (ngo(T,w,p)u— %(1 4oy w> — 0,

(w, w)

(ur,u) = 1.

g(z) = 0 is a phase condition to select a single point on the periodic orbit. We use
g(z) = (vr,xz — (™) = 0.

e w = f(x,p) is the vector field evaluated at (z, p).

(ur,u) = 1 fixes the indetermined constant of the eigenvalue problem, u, being a reference
vector. We use u, = u.

e The last term of the third equation is Wieland’s deflation, which guarantees the regularity of the
system by shifting the +1 multiplier associated with f(z,p) to zero.

X = (z,u, T, p) has dimension 2n + 3, and the 2n + 2 equations define the curve of solutions.

Primera Jornada de Sistemes Dinamics de Catalunya, 3 d’octubre de 2016, UAB — p. 13



In order to compute H(x,u,T,p), we define
y(t) = o(t, z,p)
y1(t) = Da(t, z,p)u
and, taking into account that
D¢Dgp(t,x,p) = Dy f(p(t,z,p), p)Dap(t, x,p), and Dyp(0,z,p) =1
the following system has to be integrated during a time T
v = f(y,p), y(0) =z

v1 = Dy f(y, p)y1, y1(0) = w.

Then

(T, z,p) =y(T)
Dgo(T, x,p)u =y1(T).
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The action of Dx H(x,u,T,p) on (éx,du, T, p) is

0x — Dap(T, z,p)ox — Dpp(T, x,p)dp — De(T, x,p)oT),

Dg(z)dz,

AU — DthSD(Ta Cl?,p) (’LL, 5T) o nggﬁ(T, Cl?,p) (u7 533) o D?:pgp(Ta CU,p) (u7 5]9)
— Dgo(T, x,p)ou

14+ ((w,u>z n (<27u> + (w, du) — 2(w, z) (w,u>> w) :

2(w, w) (w, w)

(Ur,ou),

where w = f(z,p) and z = Dy, f(x,p)dx + Dp f(x, p)dp. Lets define

y(t) = p(t, =, p),
y1(t) = Dz(t,z,p)u,
y2(t) = Dz (¢, z,p)ox + Dpp(t, z,p)op,
y3(t) = Dz, 0(t, z,p)(u, 6x) + D3, 0(t, z,p)(u, 5p),
ya(t) = Dyp(t, x, p)du.

Dyp(T, x,p)0T = f(y(T),p)oT,
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y(t) = ¢(t, z,p),
y1(t) = Dzo(t, z, p)u,
y2(t) = Dz (¢, z,p)ox + Dpp(t, z,p)op,
y3(t) = Dz o(t, z,p)(u, 6x) + Dz p(t, z, p)(u, 5p),
ya(t) = Dzo(t, @, p)du,
the system which must be integrated to obtain y(7T'), y;(T), i =1,...,4 is
v = f(y,p), y(0) =z
y1 = Dy f(y,p)y1, y1(0) = u
Y2 = Dy f(y,p)y2 + Dp f(y, p)op, y2(0) = oz
3 = Dy f(y,p)y3 + Dy, f(y,p)(y1,y2) + Do, f (y, p)(y1, 0p), y3(0) =0
Ya = Dy f(y,p)ya, y4(0) = du.
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Thermal convection in binary fluid mixtures

The equations in 2 = [0, '] x [0, 1] for the perturbation of the basic state (v, =0, Tc. = T.(0) — z,
and C. = C.(0) — z) in non-dimensional form are

ov+ (v -V)v=0cAv —Vp+ ocRa(© + SC)é,,

0t0 + (v- V)0 = AO + v,

0:C + (v-V)C = L(AC — AO) + v,

V.-v=0.

The boundary conditions are non-slip for v, constant temperatures at top and bottom and insulating
lateral walls for © = T' — T, and impermeable boundaries for C.

The parameters are
r Aspect ratio (4)

S Separation ratio (—0.1)
L Lewis number (0.03)
o Prandtl number (control)

Ra  Rayleigh number (control)
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To simplify the system, a streamfunction v = (=30, 0z%), and an auxiliary function n =C — ©
are used. Then

Ot AY + J(1, Ap) =0 A% + oRa [(S + 1)0,0 + Sd.1],
0:0 + J(,0) =AO + 9,9,
orn+ J(¥,m) =LAn — A®,

with J(f,g9) = 0, f0.g9 — 0> fOrg. The boundary conditions are now

©=0 at z=0,1,
8,0=0 at x=0,T.

The symmetry group of the equations is Zo X Zo2 generated by the two reflections:

R.’B : (taxazaqpa@an) — (tar — I, =z, _7707@777)7
Rz . (t,$727¢,@,n) — (t,%, 1— 2, _?pa _@7 _77)
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Variational equations

O A1 + J (v, Apr) + J (Y1, Ap) =0 A%y + oRa[(S + 1)0:01 + Szm],
0:01 + J(¢,01) + J(¢1,0) =A0O1 + 01,
orm + J(¥,m) + J(¥1,m) =LAm — AOq,

O Ahg + J (1, Apa) + J (2, Ap) =0 A%y + o Ra [(S + 1)0202 + SOzm2] + S0 A2
+ (6dRa + 0o Ra) [(S 4+ 1)0,0 + S0zn],
0tO2 + J (¢, 02) + J(¢h2,0) =AO2 + 012,
otm2 + J(¥,m2) + J(Y2,n) =LAnz — AOg,

O Athg + J (1, Avps) + J (3, A) =0 A%h3 + o Ra [(S + 1)0,03 + SOzn3] + So A%y
+ (00Ra + o Ra) [(S 4+ 1)0201 + SO0zm1]
— J (Y1, Av2) — J (2, A1),
003 + J(,03) + J(¢3,0) =A03 + 093 — J(Y1,02) — J (P2, 01),
Onz + J(¥,m3) + J(¥3,m) =LAns — AO3 — J(Y1,m2) — J(Y2,m1).
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Discretization

The functions v, ©, and 1 are approximated by a pseudo-spectral method. Collocation on a mesh of
Ng X ny = 64 X 16 (n = 3072) Gauss-Lobatto points is used.

Higher resolutions have been used to check the results.

The stiff system of ODEs obtained can be written as
Btu = Lu+ N(u)

with u = (i, ©ij5,mij)-
It is integrated by using fifth-order BDF-extrapolation formulas:
1 k—1 . k—1 .
A_tB <'you”+1 — Z aiu”_z> — Lu™ T + Z BiN(u"").
i=0 i=0

The initial points are obtained by a fully implicit BDF method.
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Some results for o0 = 0.6
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Some results for o0 = 0.6
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Curves of bifurcations

Hopt —
10 Saddle-Node
g | Neimark-Sacker
N Pitchfork

O o s Periodic orbits -
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Curves of bifurcations
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Curves of bifurcations
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Codimension-two points
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Thermal convection in rotating spherical shells

We consider:
e Newtonian fluid
e g = —~r,withy>0andr = (z,y, 2)

e A difference of temperature between the two boundaries,
with AT =T, — T, >0

e Non-slip boundary conditions v =0 at r; and 7,

e Perfectly conducting boundaries (73 and T, constant).

In the absence of movement the heat is transported by conduction.

Physical interest
e Astrophysics. Thermal convection in some stars and the atmospheres of the major planets.

e Geophysics. Thermal convection in the Earth’'s outer core.
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Approximations

The mass (p), momentum (v) and energy (T') equations, governing the dynamics of the fluid, are
written in the rotating frame of reference of the spheres, and we

e apply the Boussinesq approximation, therefore

p=p(1—a(T~-T))

just in the gravity term, and all the physical quantities are taken constant. In addition we
suppose constant density in the Coriolis term and that Q2 /vy < 1.

Write the equations in terms of the perturbation of the temperature, ©, with respect to the

conduction state
ndAT

(1 —mn)2r
with n =1r;/ro. Then © =T — T..

Nondimensionalize the equations with d = r, — r; as length, v? /yad* as temperature, and
d? /v as time scales.

v — Kinematic viscosity

o — Thermal expansion coefficient
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The equations

The equations for the perturbation of the conduction state, v, = 0 and
T.(r) = Ty + ndAT/(1 —n)?r, are

(O +v-V)v= —Vr + Vv 2B 'kxv+ Or,
N N~ N ~ y ~—
pressure gradient diSSipative term Coriolis term Buoyancy term
oc(0t+v-V)O = V20 4+ Ran(l—n)"%r3r.v,
(O ) .~ +Ran(l—mn) )

- - - v
dissipative term

V-v=0,

advective term

with © =T — T..

The non-dimensional parameters are

n=ri/ro Radius ratio (0.35)
oc=v/k Prandtl number (0.1)
E = v/Qd? Ekman number (10~%)

Ra = yaATd*/kv  Rayleigh number (control and O(10%)),
- k — Thermal diffusivity
- Q= [Q]

The symmetry group of the system (including b.c.) is SO(2) X Z2. Then when the conduction state
becomes unstable at a Hopf bifurcation, breaking the invariance by arbitrary azimuthal rotations, it
gives rise to waves rotating in the azimuthal direction, which are invariant under rotations of 27 /my.
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Equations for the scalar potentials of the velocity field

To reduce the dimension of the system, the equations are written in terms of two scalar potentials
(toroidal and poloidal) for the velocity field, i.e.,

v=V X ((¥Yr)4+V xV x(Pr).

The equations for the potentials are obtained by applying the operators (r - Vx) and (r - V x VX))
to the momentum equation.

(0r — VLU =2E" 1 (0,¥ — Q®) —r -V X (w X V),
(0t — VA LaV2® =2E71 (0,V?® + QU) — LoO +1r-V x V x (w X V),

2\ o _ n 1
(O'at—v )@—RCLWT—:SLQCD—O'(VV)@,
where w = V X v is the vorticity. The operators Lo and Q are defined as Lo = —1r2V? + 0, (r20,),

Q =rcosOV? — (Ly + 10y )(cos 00, — r~1sin0dy), (1,0, ¢) being the spherical coordinates, with 6
measuring the colatitude.

The boundary conditions at r; and r, become
e Non-slip boundaries, v =0 = S =0,P=T=0

e Perfectly conducting boundaries, ©® =0
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Expansion in spherical harmonics

The velocity potentials and the perturbation of the temperature from the conduction state are

expanded in spherical harmonics series up to degree (1) and order (m) L as

L l
(U, ®,0)(t,r,0,0) =) > (TP, @,0)(t, 7)Y (0,¢), where

=0 m=-—1
m:'r'nd

20+ 1 (1 — ! :
Y (0, p) = \/ ;_ El +Z§'le(6059)ezmq’, [ >0, -l <m<I,

P/ (cos ) is the associate Legendre polinomial, and ¥, = ¥, & ™ = & and ©; " = O".
Moreover, to have the two potentials completely determined we can choose W2 = <I>8 = 0.

A

[

The unknowns are the values of v, @7, and @;” for
0<I<Land 0 <m =myg <1, at a mesh of n,, — 1 Gauss-Lobatto
points in the radius interval [r;,7,]. For some of the solutions without

any symmetry shown later, the dimension of the system is larger than
2 x 10°.
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The equations for the amplitudes of the expansions are

OV = Dy + 2E7 (imP]" — [QP]™) — [r- V x (w x V)]]"],

I(1+1)

8; D@ = D2 — O + 2E~" (imD; @] + [QU]")

[(1+1)
+[r-V XV x (wxv)]]"],
010" = o 1DO" 4 o H(l + 1)Ran(l —n) " ?r 30" — [v- VO™,
for 0 <1< Land 0 <m =r1hg <1, and where D; = 82, + (2/7)0, — (L + 1)/r? and the action of
the operator () on a function f expanded in spherical harmonics is

QAT = =1+ 2)eft Do it — (L= D)+ D" DY, ™,

with ¢ = ((12 —m?)/(4® — 1))Y/2 and D" f = 0, f + 1f /7.

The non-slip boundary conditions and the perfectly conducting boundaries are
P =00 =V" =0and O =0atr; =n/(1 —n) and 7, = 1/(1 — 7).
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Stability of the conduction state

The above system will be written as
LoOtu = Lu + B(u,u),

where u is a vector containing the values of the amplitudes at the mesh of collocation points in the
radius, L and B are, respectively, linear and bilinear operators, and L depends on all the parameters

of the problem, in particular on Ra = p, so we will write L = L(p).

At critical values of p = p., the conduction state u = 0 becomes unstable. At the Hopf bifurcation
its azimuthal invariance is broken and branches of rotating waves start there. Then, at p., there are

vectors v. and frequencies w. such that

iwC LO Ve = LUC .
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Radius ratio dependence
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Eigenfunctions at the bifurcations from the conduction state

m=06 m=~6 m=5 m=>5

Ra=1.86e5 Ra=1.86eb Ra=1.91eb Ra=1.91eb

—
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Azimuthal rotating waves

The rotating waves of
LoOtu = Lu + B(u,u)

have a temporal dependence of the form
u(t,r,0,9) =u(r,0, p — wt).

By defining © = ¢ — wt, deriving with respect to time, by applying the chain rule, and deleting the
tildes, it is inmediate to check that @ satisfies

F(u,w,p) = wLoO,u + L(p)u + B(u,u) = 0.

To define a curve of solutions this equation must be supplemented by adding a phase condition. We
use g1(u) =< u, Opu. >= 0, where u. is a reference solution (the eigenvector, u. = v¢, at p = pe,
or a previously computed solution). It is a necessary condition for ||u — uc||3 to be minimal with
respect to the phase.

To study the dependence of the azimuthal waves with the parameter p we use continuation methods
applied to the system

F(u,w,
H(u,w,p) = ( P) =0,
< U, OpUe >

for X = (u,w,p).
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For the linear systems we use GMRES, which requires the action of the Jacobian matrix
Dx H(u,w,p) on vectors and a suitable preconditioner for

OuF  OuF OpF
(Ouh)T  Ouh  Oph

DXH<U'7 W,p)
aXh(ua W,p)

where h(u,w,p) = 0 is the pseudo-arclength condition.

We use
WprecLo({?cp + Lprec 0 O

0 I 0],
0 0 1

Lprec = L(pprec) and wprec being, respectively, the operator L and the frequency of the wave at a
previous step. Since L is block-tridiagonal, due to the operator (), it is possible to solve this latter
system efficiently by means of an adapted LU decomposition.
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Stability of the waves

Suppose a wave of the form u(r,0, o — wt) = u(r, 0, p) has been found.

To study its stability we consider a perturbation v(t,r, 0, p) of u(r,0, ). Then, the linearization of
the equation gives the eigenvalue problem

ALov = (L + wLodg + B(u, ) + B(-,u)) v.

To find the leading spectra, the ARPACK package based on Arnoldi algorithms (Lehoucq &

Sorensen(1998)) is employed. The subroutine only needs the action of the operator Lo_lDuF(u) on
vectors, and it provides the eigenvalues of maximal modulus, so to get those of maximal real part
some transformation must be used. We use a real shift-invert transformation, with shift 3, and

compute the eigenvalues of
(Ly "Dy F(u) — BI)™1.

Then if C is eigenvalue of this matrix, A = 3+ 1/( is eigenvalue of L(;lDuF(u).

To apply the inverse matrix on a vector is equivalent to solving with (LnguF(u) — BI), but the
convergence is very slow. So we precondition with the tridiagonal part of the matrix minus 31,
Ly ' (L + wLods — BI).
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Bifurcation diagram for n = 0.35
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Solutions along the m=6 branch

Ra=1.91e5 Ra=2.27e5
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Eigenfunctions at the bifurcation from the m=6 wave

Solution Eigenfunc.

Ra=2.584¢e5 Re vy Im vy
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Eigenfunctions at the bifurcation from the m=5 wave

Re V1
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Modulated rotating waves
The instability of the rotating waves gives rise to modulated rotating waves of the system
LoOtu = Lu + B(u,u).

These modulated waves are solutions for which there exist a minimal time 7 > 0 and a precession
velocity w such that

u(t +7,7,0,0) =u(t,r,0,p —wr) Vit
The time 7 is the period of the modulation in the frame of reference at which only the oscillations

due to the modulation are observed, and w is the angular velocity of this frame of reference (relative
to the spheres).

In this case, taking into account that the modulated rotating waves can be written as
u(t,r,0,p) =u(t,r,0,p — wt) and that again we call p = ¢ — wt, by deriving, it results that
Otu = Ot — wdzu. So, they can be computed as periodic orbits of the system

LoOtu = wLoOzu + L(p)u + B(u,u).

Now, the unknows are X = (u, 7,w,p), so two additional phase conditions g1(u) =0, g2(u) = 0 are
needed to define a curve of solutions. As before, we suppose the pseudo-arclength condition
included in the continuation code.
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The conditions g1 (u) = 0 and g2(u) = 0 are selected to fix the two undetermined phases of the
modulated wave. We use the conditions g1 (u) =< u,dy,uc >= 0 and g2(u) =< u, 8$uc >=0,
where u. is a reference solution (the eigenvector, u. = v, at p = p., a previously computed
solution, or the extrapolated value of w at the first iteration). The former determines the azimuthal
phase and the second the phase of the modulation.

So, we look for solutions of the system

U — ¢(T7 u, w7p)
H(u,w, T, p) — < u, (9CP’UJC > — O,
< u, 85’)uc >
o(T,u,w,p) being the solution of
LoOtu = wLOE?@u + L(p)u + B(u, u,)

at time 7 with initial condition v at t = 0, and for fixed w and p (the continuation parameter).
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Bifurcation diagram for n = 0.35
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Bifurcation diagram of w versus Ra
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parameters are ¢ = 0.1, and E = 10~4.
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Some conclusions for this problem

e With continuation techniques we have been able to find branches of travelling as well as
modulated waves which are impossible to detect with just time integrations. Regions of
multistability of two and three different waves have been identified.

e We have obtained branches of stable modulated waves in a small Rayleigh number range, one of
them, without any azimuthal symmetry at Ra/Ra. = 1.16, i.e, very close to the onset of
convection.

e The m = 1,5,6 modulated waves give rise to three-frequency stable solutions via tertiary Hopf
bifurcations. The symmetry of the latter is seen from the eigenfunctions of the stability problem.

e To find a single modulated wave with relative tolerances of 10~8 the Newton-Krylov method
typically converges in roughly 4 Newton iterations. Each of them requires a function evaluation,
i.e, one time integration of an ODE system of dimension n = 0(10° — 10%) plus an average of
15 GMRES iterations, i.e, 15 additional time integrations of an ODE system of dimension 2n
are needed. Close to bifurcation points the convergence slows down. Efficient and accurate
(high-order) time integration is essential.
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Other kind of computations

Already studied:

e Computation of periodic orbits by multiple shooting in parallel with each shoot on a different
processor and preconditioned to obtain a linear speed-up.

e Invariant 2-tori, computing a single point on the invariant curve on a Poincaré section.

e Invariant 2-tori, computing a collection of points approximating a segment of the invariant curve
on a Poincaré section.

e Computation of boundaries of Arnold’s tongues.

e Computation of the coefficients of a normal form close to a multicritical periodic orbit only

known numerically.
To do:

e Continuation of some codimension-two bifurcations. Some require the vanishing of a normal
form coefficient. Are there alternative formulations without the need of adjoint problems?

e Delay ODEs or PDEs.

e Software. Write a driver for the most common computations (equilibria, periodic orbits and
branching at codimension-one bifurcations), letting to the user the spatial discretization and
time integration.

e ctc.
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