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We consider maps F : U ¢ R” — R" with
F(0) =0, DF(0) =1d.
A neighbourhood of 0 is the center manifold.
Case n=1
Fix)=x+axk+..., a#0
Takens 73: If F € C*, itis C™ conjugate to F(x) = x 4+ xX + §x2k~
Casen=2

Unstabilty results go back to Levi-Civita, 1901
Characterizations of stability, C. Simd, 1980’s

Case n = 1 complex An example: 1D complex maps
F:z—z4azl+ ...

Leau Fatou flower theorem
Taking k =2 and a= —1

(3)=(" %)
F =
y y —2xy
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We observe that the stable sets may be
@ open sets,
@ curves with one extreme at the fixed point.

Let UF =[0,r) x (—r,r). We define

Wit ={zeR?|F(z) € U}, ¥n>0, lim F"(z) =0},

Wit = {zeR2|F(2) € U}, vn>0, lm F(z)=0}.
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()=t )

Slotnick (1958) considered Poincaré maps of analytic periodic
Hamiltonian systems H(x, y, t)

McGehee (1973) considered non-conservative analytic maps, with p, g
homogeneous polynomials of degree N and

@ p(x,0)<0
@ g(x,0)=0
@ gy(x,0)>0

He proved that 95, r s.t.
WS 0 {(x,y); 0 < x <r,|y| < fBx} = graph

with ¢ differentiable and ¢)(o ) analytic.

|. Baldoma, E. Fontich, P. Martin (UPC, UB) Invariant manifolds 3 October 2016 5/45



The parameterization method for maps

The parameterization method for I.M. of fixed points of maps
F:UcRMM™ — R™M consists of looking for W as images of
parameterizations. More concretely, if F(0) = 0 and we suspect that
W is going to be tangent to R” x {0} we look for K : V ¢ R" — R"*™
such that K(0) = 0, DK(0) = (1d, 0), and

@ K conjugates Fy to a possibly simpler map R in R":
FoK=KoR.

Note that, the conjugacy implies DF(0)(Id,0) = DR(0)

FoK=KoR
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The parameterization method for flows

@ The autonomous case, x = X(x). We look for K (the
parameterization) and Y (a new vector field) such that
X(K(x)) = DK(x)Y(x).

@ The non-autonomous case, x = X(x, t). We extend the vector
field _
x = X(x,1), t=1
and apply the method of the autonomous case to obtain the
invariance condition

X(K(x,t),t) = DK(x,t)Y(x, t) + 0tK(x, 1).
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The origin of the method can be traced back to the works of Poincaré and Lyapunov.
C. Sim6. On the analytical and numerical approximations of invarinat manifolds, 1990

X Cabré; E F; R de la Llave. The parameterization method for invariant manifolds. I. Manifolds
associated to non-resonant subspaces. Indiana Univ. Math. J. 52 (2003), no. 2, 283-328.

X Cabré; E F; R de la Llave. The parameterization method for invariant manifolds. 1ll. Overview
and applications. J. Differential Equations 218 (2005), no. 2, 444-515.

+ many papers, most of them from people in BCN:

Haro, Gonzalez, Villanueva, Sire, Figueres, Mondelo, Luque, Canadell, Llave, Baldoma, Martin,

A Haro; M Canadell; JL Figueras; A Luque; JM Mondelo. The Parameterization Method for
Invariant Manifolds. From Rigorous Results to Effective Computations, Springer, 2016.
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One-dimensional submanifolds for differentiable maps

Let F: U c R™™™ — R'*™ with F(0) =0, DF(0) =1d.
We use the parameterization method to find an embedding
K:IcR—-R"*"andamap R:/c R — R such that

FoK=KoR.

The fact that the curve passes through the origin and is tangent to the
first axis is ensured by the supplementary conditions

K(0) =0, DK(0) = (1,0)".
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Theorem

[Baldoma, F., de la Llave, Martin, 05] Let F : U c R'*" — R'+™ pe g
C" map, r > 2 orr = oo, such that F(0,0) = 0, DF(0,0) =1d

{F1(X7y): X _aXN+XN71 <V7y>+?N(X7y) +fZN+1(X7.y)7
Fa(x,y) =y +xM=1By + gu(x.y) +g>m1(X,y),

forsome2 < N, M < r. In the case that M < N assume furthermore
Spec B C {A € C|Re A > 0}.

Let L =min(N,M) andn =1+ N — L. We assume thatr > 2N — 1.

v
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Theorem
Then there exista C® map K : [0, f)) ¢ R — R+, with
p=[(r—N+1)/n]—1, ofclass C" in (0, &) and a polynomial
R : R — R such that

FoK=KoR.

Moreover

K(t) = (t,0)+ O(t3),  R(t)=t—atN + pt2N-T

| Baldom@; E F; R de la Llave; P Martin. The parameterization method for one-dimensional
invariant manifolds of higher dimensional parabolic fixed points. Discrete Contin. Dyn. Syst. 17
(2007), no. 4, 835-865.
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n dimensional parabolic manifolds. Setting

Function sets:

H'={h:U — R¥ : c° homogeneous of degree ¢}

H> = {h:U R : % ||h(x)| = O(|x|[*)}

H> = {h:U—RK O [lh(x)[| = o(llx||)}.
We consider maps of the form

F<x>_<x+p(x,y)~|—f(x,y)> x eR"

y y+axy)+9(x.y) )’ y €RT
with
peHN, qgeHM few=Nt geHZMH

and
N,M>2
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The stable set

We will work with and open star shaped w.r.t. 0 set V C R” such that
0eoVuV.

In the analytic case, we will have to work in a complex neighborhood of
V.

Q(7) = {z€C":Rez € V, |[Imz| < v||Rez|}.

For technical reasons, we also have to consider

V, = VnB,0), Q(v, p) = Q(v) N B,(0).
Then we will deal with stable sets depending on V:

S ={z=(x,y)e U : 7*FK(z)e V, k>0, FK(z) - 0}
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Dynamics of x — x + p(x, 0)

The map x — x + p(x, 0) is the time one step of the Euler method of
x = p(x,0).
The case n = 2 is well understood (for instance Argémi, 1968).

Center Focus

Union of sectors

The study of the dynamics of x — x + p(x), for x € C" is a subject of
complex dynamics: Ecalle, Hakim, Abate, ...
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Hypotheses

For some norms, there exists pg > 0 such that
H1 There exists a, > 0 such that

Ix+ p(x, 0)| < [Ix[| = apllx[V, X € V.
H2 Dxq(x,0) = 0 and there exists B, > 0 such that
ld = Dyq(x,0)| <1 = Bglx["",  x€ V.
H3 There exists a constant 2, > 0 such that

dist(x + p(x,0), (Vpo)S) > avlx|V,  x € V.
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Main result. Existence and regularity

In the above setting, V star-shaped w.r.t.0, F € C’, hypotheses H1, H2
and H3.

There exists ¢y = ly(p, q, V), s.t. if r > £y and there exist K=, R of
class C"" with

K=(x) = (x,0)+ 02, R(x) = x + p(x,0) + Op1

and ; ;
FoK-—K oR=0,, >l

then 3p and a unique K~ : V, —» U, K = O;_ny1 St K= K= + K~
satisfies
FoK—-—KoR=0

Regularity:

if cond (*) is satisfied K € Cc™in(r)

if cond (*) is not satisfied K € C", r, depending on p, q, V.
Dependence on parameters
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Computing an approximation

For this presentation we only consider the case N = M. We look for
approximations

V4 ' L+N—-1 ) ) ] ]
K<=Y K., R=ld+ Y R, K ReH,
j=1 j=N

such that
FoKS—KSoRemn N1
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Computing K=. First step

We proceed by induction. When j = 1,
K'(x) = (x,0)7,

and

pe
E>1::FoK1—K1oR:K1+<qEK1

)
)
) )
To obtain E>' € H>N we take

R(x) = x + p(x,0).
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Computing K=. Induction step

Assume that we have

j—1 N-+j—2
K§j71 _ Z Ki, RSN+/'*2 —1d+ Z Ri, Ki, Ri c Hi,
i=1 j=N
such that
E>I-1 .= Fo K1 _ KSI-1 o RENH—2 ¢ y2N+H-1,
We look for K/, RI+*N=1 such that
KS/ = K§j71 + Kj RSNJr/?'I — R§N+j72 + RN+]'71

satisfy
E> — FoKS — KS o RENH-1 ¢ =N+
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Recall that N = M.

E> —F o (KSJ'—1 + Kj) — (K§1—1 + Kj) o (RSN+J'—2 + RN+/'—1)

E;/ Dp(x,0)K/ — DK}, RN — RN+i-1 N
- ( E}H ) * ( Dg(x, 0)K! —XDK/yRN +OUXIT)

with K/ = (K, KJ,). We try to find K%, K%, and RN+/~1 such that
Dyp(x, 0)KY + Dyp(x,0)K), — DK p(x,0) — RNH~=1 = _N+i-1

and | | |
Dyq(x,0)K/, — DK}, p(x,0) = —E)' ",

Such conditions leads us to introduce the auxiliary equation
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Computing K=. The auxiliary equation

Let
Dh(x)p(x) — Q(x)h(x) = W(x).
Counting polynomial coefficients

xeR"  h(x)eR™  heH, Dh-p—Qhen/ N

We have
( j4+n—1 > m
n—1
@ Number of equations

@ Number of coefficients
<j+N—1+n—1 >m
n—1

This implies that the auxiliary equation generically has no polynomial
solutions, except for n = 1.
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Solutions of Dh(x)p(x) — Q(x)h(x) = w(x)

We look for homogeneous solutions of
Dh(x)p(x) — Q(x)h(x) = W(x).

Assume that p € HN, Q € HN-1 is a square matrix and w € HN*>
defined on the convex set V. In addition,

HP1 There exists a, > 0 such that
X +POOI < X[l = apllx|™, X € Vi,
HP2 There exists a constant 27, - 0 such that

dist(x +p(x), (Vo)) > a0 XV, x € V.
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Some notation:

P [1d —Q(x)] — 1
by, = sup , Bq = — su
T xevy, XV xeV,, XV

and
Cp =ap, If Bq <0, and ¢p, = bp otherwise.

Moreover, ¢(t, x) is the solution of
X = p(x)

and M(t, x) is the solution of

¥ =Qp(t,x)yY,  $(0)=1d
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The result

Letp,Q,wbeC". If v+ 1+ %‘3 > max{1 — ﬁ—s, 0}, there exists a unique
C' solution h € H**' of  Dh(x)p(x) — Q(x)h(x) = w(x) given by:

0
h(x) = / M1t x)W((t, X)) dt,  xe V.

Concerning its regularity we have the following cases:

Q Ay > bp. If 1 <r<oo,then hisC"in V. If p,Q,w are real analytic
functions in Q(~g), his analytic in Q(~1) for some v1 < 7o.

Q A, =bp. If1 <r<oo,thenhisC"in V.
Q Ap < bp. Let rp be the maximum of 1 </ < r such that
v+14+—=—j|(1—-—-—]>0.
Cp bp
Then hisC'™ in V.
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Loss of differentiability
Let F = g1 Of

X=p(x),  y=aqX)y+9(x), x=(x,%)cR%ycR
and p is such that x = p(x) in polar coordinates is
r=—ard, 6 = r*sin46
and

gi(x) = b(xZ + x3)%,  g(x) = 4(xZ + x3)x1 X2(XZ — XZ).
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Invariant manifold tangentto y = 0

0 6
h(x) = / M, (1, X)) [or(t: 1.0)]® sin(dpo(t: 7, 0)) ot

where ¢ is the solution of x = p(x) and
M, is the solution of M, = b(y/(t; r,0))*M, with M, (0, r,0) = 1.

0
1
h(x) = 4c / dt
“Joo (1+ datrty =5 [2 + (1 + 4atrt) ]

The regularity of h at points (0, x2) is the same as the regularity of

1

2m—1
S log —=
g 2

which is C2M2,
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For differential equations the results are completely analogous. The
homological equations depend on the same linear PDE.

Parabolic points and periodic orbits appear in Celestial Mechanics
@ Moser (Sitnikov problem) 73
@ McGehee 73
@ Easton / Robinson 84

Martinez-Pinol 94

Martinez-Sim6 14

Guardia-Martin-Seara 15
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An application: the spatial elliptic RTBP

Assume two point masses move under their mutual gravitational
attraction force in elliptic motion. Let be i and 1 — p their masses,
0 < u < 1/2. Their position gy, g € R3 can be described by

g =pg, G=-(1-pq  qf)=(p(f)cosf,p(f)sinf,0)
where p(f), for a given eccentricity 0 < e < 1, satisfies
(f) = 1-¢° df  (1+ecosf)?
P = 1 ecos f’ a  (1-e?2)32 "
A third massless body moves in R3 under the attraction of the other
two. The position of the third body g satisfies

. q—a q—Q
- —(1— _
q=-(1-p) 3 3

) ri:”q_qi||ai:172'

This system is Hamiltonian with respect to

2 1
H(qapa t) = "02” - (qa t)a U(q7 t) =
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Preliminary changes:
@ spherical coordinates (r, «, 6), (R, A, ©)
@ McGehee coordinates r = 2/z2
The set {z =0, R = 0} is invariant and foliated by fixed points. We
focus on those with § = © =0, a = g, A = Ap.
Further changes
° 0 zO a—ag+ AR A— A

z’ 0’ z ’ z

u=(z+R)/2, v=(z—-R)/2
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Let X denote the vector after the changesAof variables. It can be written
in the form of our theorem taking x = (u,©), y = (v, &, A, 0) with

Tu+v)iv
(u+v)2(u—v)
(U+Vv)2(u—v)
(u+v)*(u—v)

_1 3
p(X7y) = <_1(U‘:_(L‘I/)—i2_(‘zl)_uv)é> ) q(va) =

NN N
> D> O

which satisfies the hypotheses of our theorem. Hence, the origin of
this system (which corresponds to any point in the manifold at infinity
with § = © = 0) has parabolic two dimensional attracting manifolds.
Our theorem states that they can be approximated by sums of
homogeneous functions of increasing degree.

The application of our method provides the following unexpected
result.
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The parabolic manifolds admit polynomial approximation

Theorem

The origin of the previous system is parabolic. It has a stable parabolic
invariant manifold that admits polynomial expansion up to any order,
that is, for any ¢ > 1 there exist K(x, t), 2r-periodic in t, and Y (x) of
the form

/=2 1=5

where K' and Y' are homogeneous polynomials of degree I, such that

X(K(x,1),1) — DK(x, 1) Y(x) — 9K (x, ) = o(||x||).
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Gevrey character of 1D manifolds

We consider (X,y,2) = F(x,y,2),x €eR, y € R™, z € R™, with

I

=x —ax" + XNV (v, yy + XNV (w, 2) + By + o,

=y + XM By + xM " Boz + G + gomi1.
z2=Cz+ h>2(x,y,2)

@ NM>2 a#0

@ 0¢ SpecBy if M< N, —aj ¢ SpecBy,Vj e N,ift M= N
@ 1¢ SpecC

<I

. Baldoma-A. Haro. One dimensional invariant manifolds of Gevrey type in real-analyitc maps.
DCDS, 295-322, 2008.
We look for the formal solution

Kiy=>_Kt, R(t)=t—at" +bt?N"
of Fo K = Ko R. We want to obtain bounds of Gevrey type:
K| < CDj1"

The series are Gevrey v = a with o = 5 if N < M and a = 'y if
M <N
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Formal computation of the manifold

Notation:

x —axN
E(X,y,Z): y ) G(X7y,Z):F(X,y,Z)-E(X,y,Z),

Cz
(2)
and the family of operators (/ > 2)
—(By + alld)~", if N=M,
A=< B, if M<N, (3)
—(la)~"'Id, if M>N
and
L = min{N, M}.
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We want to solve Fo K = K o R.
Kf =—(C—1d)'EF,

y _JAE it N<M,
P\ AKEL,  +BKP), it N> M,
—1 T T ,
P e R A
C, it /=N,

and

- o it I1>1, I£N,
P T b= Bl + VK + WK, if 1= N;
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I+N—-1

HK/+Z

i=1 k=N

2

4ty =I+N—1
1< <I—1

X —
Ein_1=-—a

1—1

,ZK;

k=2

> 1A

Lt l=l+N—1 =1
1<<IH+N-2

I+L—1

-y

k=M

y
E/+L71

>

W+t he=I+L-1

>

L+ +he=I+N—1
1<h<I—1

G;(([K/w 7K/k]

CALOERN

1<l <min{/—1,l+L—M}

min{/—1,/+L—N}

y

- Z K
k=M—L+2

e =l L1

>

1<h<I+N—2

and

/
zZ _
E=> X
k=2 =1
1<i<l—1

7 [Ky s

I—N+1

K= > KE
par

k
11 A

i=1

>

I1+"'+Ik:/
1< <IHN-2
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We perform some preliminary changes and a rescaling of size \.
Those changes do not afect the possible Gevrey character of the
parameterization.

Using an induction procedure we get that there exists A\ > 1 big enough
such that the coeffients of K corresponding to the rescaled map satisfy

1Kl < Cjt*
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Gevrey functions and Gevrey series

Maurice Gevrey in “Sur la nature analytique des solutions des équations aux dérivées partielles”
Ann. Scien. E.N.S. (1918)
p € C®(a,b)isofclass ain (a,b) if IM, R > 0 s.t.
d"yp
X

< MR (an) ~ (auz(zﬂ)m—a)/ZM) (@R™1)"nl*, x € (a,b),

If « = 1 then ¢ is analytic with a radius of convergence bigger or equal
than R/a. If a < 1 then ¢ is entire.
Gevrey series
Balser: a formal series > a,z" is Gevrey of order 1/k if 3C, K s.t.
n

lan] < CK"T(1 + E)’
M. Canalis-Durand: a formal series > a,z" is Gevrey of order 1/k and
type Aif 3C, a s.t.

n>0

lan| < CAY¥T (a + g), n>0

Let C[[z]]1 k.4 be the set of formal series of order 1/k and type A
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Gevrey functions are particular cases of ultradifferentiable functions:
C* functions whose derivatives satisfy growth restrictions on their
derivatives.

Concretely, given a sequence M = (Mj,) of positive numbers,
we saythat f: Q C RP — RY9, f € C> is of class M (f € EM)
if for any x € ©, 3 a nbh U and numbers A, B > 0 s.t.

L ID00) < ABM,, x € Uin>o0.

(Denjoy Carleman classes of Roumieu type)
Gevrey classes of order « are obtained when M, = n!<,
Fact If 3\ > 1 s.t.

sup MMy, ... My, < MM
Ky+--+kr=k

then the class £M is closed under composition.
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Now we concentrate on functions defined on sectors

S={z[0<|z|<r B <argz < Bz}

We say that f : S — C is (Poincaré) asymptotic to a formal series
> anz"in Swhen z— 0 ifforall S, Sy ¢ SU{0}, N >0, 3Cg, y s.t.

N-1
f(z) = > anz"| < Cs a2V, ze S
n=0

We say that f : S — C is (Gevrey) asymptotic to a formal series > a,z”
in Swhen z +— 0 if itis Poincaré asymptotic and Cs, y < Cs, AVN!®

Let A, 4(S) be the set of analytic functions on S that are Gevrey
asymptotic to some formal series. Let A,(S) = Ua=0A44.4(S)

Property If f € A, a(S) then the formal series ) anz" is Gevrey
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One can consider the maps

Ji:2 A(S) — C[[Z]]
Jo : Ao A(S) — Cl[Z]]aa
J3: Aa(S) = C[[2]]a

They are morphisms of differential algebras.

Theorem of Borel-Ritt-Gevrey
If opening of S is less than ar then Js is exhaustive.
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Once we know a Gevrey formal series K solution of Fo K = K o R with
R as before we can use the previous tools to get an analytic solution K
on some sector.

Let 5 < aw. We have that

@ dp>0and Kg: S(3,p) — U c C*m+m analytic Gevrey
asymptotic to K of order a.

@ dc,k > 0s.t.
|F o Kg(t) — Kg o R(t)|| < cexp(—r|t|~1/), te S(8,p)

We look for A s.t. Kg + A is solution of the invariance equation.
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Working with the equation we arrive to an equivalent fixed point
equation

A=-Ly'[No(Kg+A)—NoKg—AoR+E]
where L is the linear part of Fand ' = F — Ly and
E=FoKg—KgoR
We work in the space

Ya(S)={A: S — C"*™™ | continuous, analytic on S,
1Al := supexp(x|t| /)| A(t)[| < oo}

In our case we can apply this strategy when N > M to get an analytic
K.
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Not all manifolds are Gevrey
Let ~
F< X ) _ < x —axN + Ny 4 iy + g >
y y+bxNly + Gy + goni

If a,b > 0, F has a parabolic curve tangent to the x-axis which is the
graph of a Gevrey function ¢f.

For any p > 1 there exists H s.t.
F(x.y) = H(x,y) = O(ll(x, y)I"*P)

and H has a parabolic curve which is the graph of a polynomial .
Moreover

F(X) = pr(x) = O(|Ix|IP*T)
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Examples of optimal Gevrey order for some formal solutions

Infinity manifolds of the Sitnikov problem

Martinez-Sim6 have shown they are Gevrey of order 1/3. If this case
N=M=4sothata=1/(N—-1).

R. Martinez-C. Simé. On the regularity of the infinity manifolds: the case of Sitnikov problem and
some global aspects of the dynamics. Talk at Fields Institute, Toronto, 2009.

Maps with M < N

x= —axN
y= bx" 1y cxM+1 M>2 N>M+1

Ea X\ _(x) —axV
y = Pt=1 y )~ Ly bXM—1y+CXM+1

2 Nx2N-1
+ < —ab(M — 1) xMN=2y 1 p2x2M=2y, _ ac(M + 1)xM+N 4+ pex2M )
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Invariance eq. for graph h
—axNH (x) = bxM=Th(x) + cxM+

We look for h(x) = 50 hnx"

—c(—a\i iT (2 +1) ; ;
hn = F(F)(N-M) f(t) ifn=24+i(N—-M)
h, = otherwise

o

)

and hence

ha= CD'T(an), D= <_a) C a=

with T'(an) ~ n1®
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